DOI QR코드

DOI QR Code

Crosslinking Density Control and Its Carbonization Characteristics of Spherical Phenolic Resin Particles by Using Cresol as Comonomer

구형 페놀수지 입자의 크레졸을 이용한 가교조절 및 탄화물성 변화

  • Hahn, Dongseok (Department of Polymer Science and Engineering, Korea National University of Transportation) ;
  • Kim, Hongkyeong (Department of Polymer Science and Engineering, Korea National University of Transportation)
  • 한동석 (한국교통대학교 나노고분자공학과) ;
  • 김홍경 (한국교통대학교 나노고분자공학과)
  • Received : 2020.01.21
  • Accepted : 2020.06.11
  • Published : 2020.11.01

Abstract

Spherical phenolic resin beads were synthesized by suspension polymerization at 98 ℃ from phenol, ortho-cresol, formaldehyde, with triethylamine as a basic catalyst, and spherical phenol-cresol copolymer resin beads with relatively low crosslinking density as well. Phenol reacts with formaldehyde at two ortho- and one para- positions to form a crosslinked structure, but ortho-cresol instead of phenol reduces the crosslinking density during copolymerization due to the methyl group at a ortho- position. As a result, spherical phenol-cresol copolymer beads showed more shrinkage with decreasing apparent density compared to the spherical phenol beads when carbonized at 700 ℃ under nitrogen. As the molecular weight of the cresol oligomer increases, the pore radius of the carbonized copolymer beads decreases, which is consistent with the density and shrinkage results. It was confirmed that the characteristics such as density decrease, shrinkage, yield and so on during carbonization can be controlled by controlling the degree of crosslinking of the spherical phenolic resin particles with cresol.

구형 페놀수지 입자 및 상대적으로 가교밀도가 낮은 구형 페놀-크레졸 공중합체 수지를 페놀, ortho-크레졸, 및 포름알데히드로부터 염기성 촉매인 트리에틸아민(triethylamine)의 존재 하에 98 ℃에서 현탁중합을 통하여 합성하였다. 페놀은 두 개의 ortho 및 한 개의 para 위치에서 포름알데히드와 반응하여 가교구조를 형성하지만 ortho-크레졸은 선점된 하나의 ortho 위치의 methyl 기로 인하여 공중합 시 가교 밀도를 저하시킨다. 그 영향으로 700 ℃ 질소 환경에서의 탄화 시 구형 페놀수지 비드에 비해 구형 페놀-크레졸 공중합체 수지의 경우 겉보기 밀도의 감소와 함께 수축율의 증가 현상이 일어나는 것을 확인할 수 있었다. 크레졸 올리고머의 분자량이 증가함에 따라 탄화 된 공중 합체 비드의 기공 반경이 감소하여 밀도 및 수축 결과와 일치 하였으며, 크레졸을 이용하여 구형 페놀수지 입자의 가교도를 조절함으로써 탄화과정에서의 밀도 감소율이 약 3~6%포인트 증가되고, 수축율은 약 6~20%포인트 증가함을 확인하였다.

Keywords

References

  1. Knop, A. and Pilato, L. A., Phenolic Resins. Springer, Berlin (1986).
  2. Weyl, H., Ed., Handbuch der Organischen Chemie, Makromolekulare Stoffie, 4th ed., vols. 14/1 and 14/2 Thieme, Stuttgart(1961).
  3. Nylen, P. and Sunderland, E., Modern Surface Coatings, Wiley, London(1965).
  4. Bechmann, A. and Miiler, K., Phenoplaste VEB, Verlag, Leipzig (1973).
  5. Hultzsch, K., Chemie der Phenolrarze, Springer, Berlin(1950).
  6. Carswell, T. S. High Polymer, Vol. VII: Phenoplasts, Their Structure, Properties and Chemical Technology, Inter Science, New York(1947).
  7. Megson, N. J. L., Phenol Resin Chemistry, Butterworth, London(1958).
  8. Martin, R. W., The Chemistry of Phenolic Resins: the Formation, Structure and Reactions of Phenolic Resins Related Products, Wiley, New York(1956).
  9. Hesse, W., In Ullmanns Encyclopedia of Industrial Chemistry, Vol. A19, 371, Weinheim(1991).
  10. Kirk-Othmer, Ed. Encyclopedia of Chemical Technology, 3rd ed., Vol. 17 Phenolic Resins, Wiley, New York(1983).
  11. Grenier-Loustalot, M. F., Larroque, P. and Badel, D., "Phenolic Resins: 4. Self-condensation of Methylolphenols in Formaldehyde-free Media," Polymer, 37, 955(1996). https://doi.org/10.1016/0032-3861(96)87277-6
  12. Bakelite, L. H., "The Chemical Constitution of Resinous Phenolic Condensation Products," Ind. Eng. Chem., 5, 506(1913). https://doi.org/10.1021/ie50054a028
  13. Gould, D. F., Phenolic Resins, Reinhold, New York(1959).
  14. Fry, J. S., Merrium, C. N. and Boyd, W. H., "Chemistry and Technology of Phenolic Resins and Coatings," ACS Symp. Series, 285, 1141(1985).
  15. Frunchtel, J. S. and Jung, G., "Organic Chemistry on Solid Supports," Angew. Chem. Int. Ed. Engl., 35, 17(1996). https://doi.org/10.1002/anie.199600171
  16. Kempe, M. and Barany, G., "Clear - A Novel Family of Highly Cross-Linked Polymeric Supports for Solid-Phase Peptide-Synthesis," J. Am. Chem. Soc., 118, 7083(1996). https://doi.org/10.1021/ja954196s
  17. Hodge, P., "Polymer-supported organic reactions: what takes place in the beads?," Chem Soc Rev, 26, 417(1997). https://doi.org/10.1039/cs9972600417
  18. Abraham, S., Rajan, P. K., and Sreekumar, K., "Polymeric Analog of Isoxazolinium Permanganate: Preparation and Use as Synthetic Reagent," J. Appl. Polym. Sci., 65, 1169(1997). https://doi.org/10.1002/(SICI)1097-4628(19970808)65:6<1169::AID-APP13>3.0.CO;2-P
  19. Klampfl, C. W., Buchberger, W., Rieder, G., and Bonn, G. K., "Retention Behavior of Carboyxlic Acids on Highly Cross-linked Poly(styrene-divinylbenzene)-based and Silica-based Cation Exchangers," J. Chromatogr. A, 770, 23(1997). https://doi.org/10.1016/S0021-9673(96)01075-8
  20. Steinke, J. H. G., Sherrington, D. C., and Dunkin, J. R., "Imprinting of Synthetic Polymers Using Molecular Templates," Adv. Polym. Sci., 123, 81(1995). https://doi.org/10.1007/3-540-58908-2_3
  21. Mayes, A. G. and Mosbach, K., "Molecularly Imprinted Polymers: Useful Materials for Analytical Chemistry?," Trends in Anal. Chem., 16, 321(1997). https://doi.org/10.1016/S0165-9936(97)00037-X
  22. Sellergen, B., Dauwe, C., and Schneider, T., "Pressure-Induced Binding Sites in Molecularly Imprinted Newtork Polymers," Macromolecules, 30, 2454(1997). https://doi.org/10.1021/ma960745i
  23. Chen, G., Guan, Z., Chen, C.-T., Fu, L., Sundaresan, V., and Arnold, F. H., "A Glucose-Sensing Polymer," Nat. Biotechnol., 15, 354(1997). https://doi.org/10.1038/nbt0497-354
  24. Arshady, R., "Suspension, Eemulsion, and Dispersion Polymerization: A Methodological Survey," Colloid Polym. Sci., 270, 717(1992). https://doi.org/10.1007/BF00776142
  25. Yuan, H. G., Kalfas, G., and Ray, W. H., "Suspension Polymerization," J. Macromol. Sci. rev. Macromol. Chem. Phys., C31, 215(1991). https://doi.org/10.1080/15321799108021924
  26. Vivaldo-Lima, E., Wood, P. E., Hamielec, A. E., and Penlidis, A., "An Updated Review on Suspension Polymerization," Ind. Eng. Chem. Res., 36, 939(1997). https://doi.org/10.1021/ie960361g
  27. Svec, F. and Frechet, J. M. J., "New Designs of Macroporous Polymers and Supports: from Separation to Biocatalysis," Science, 273, 205(1996). https://doi.org/10.1126/science.273.5272.205
  28. Lewandowski, K., Svec, F.,and Frechet, J. M. J., "Preparation of Macroporous, Monodisperse, Functionalized Styrene-Divinylbenzene Copolymer Beads : Effect of the Nature of the Monomers and Total Porogen Volume on the Porous Properties," J. Appl. Polym. Sci., 67, 597(1998). https://doi.org/10.1002/(SICI)1097-4628(19980124)67:4<597::AID-APP2>3.0.CO;2-F
  29. Jo, Y. D., Park, K. S., Ahn, J. H., and Ihm, S. K., "Hollow Gelular Beads of Styrene-Divinylbenzene Copolymer Prepared by Suspension Polymerization," Eur. Polym. J., 65, 967(1996).
  30. Coutinho, F. M. B., Neves, M. A. F. S., and Dias, M. L., "Porous Structure and Swelling Properties of Styrene-Divinylbenzene Copolymers for Size Exclusion Chromatography," J. Appl. Polym. Sci., 65, 1257(1997). https://doi.org/10.1002/(SICI)1097-4628(19970815)65:7<1257::AID-APP3>3.0.CO;2-H
  31. Liang, Y. C., Svec, F., and Frechet, J. M. J., "Preparation and Functionalization of Reactive Monodisperse Macroporous Poly (chloromethylstyrene-co-styrene-co-divinylbenzene) Beads by a Staged Templated Suspension Polymerization," J. Polym. Sci. Part A: Polym. Chem., 35, 2631(1997). https://doi.org/10.1002/(SICI)1099-0518(19970930)35:13<2631::AID-POLA10>3.0.CO;2-C
  32. Hatori, T., Sekiguchi, H., and Ogura, K., "Production on Pressure/Heat-Sensitive Self-Curing Spherical Phenolic Resin," Jpn. Pat. 11060664(1997).
  33. Nishiguchi, S. and Matsuo, Y., "Production of Spherical Phenol Resin cured Material and Reaction Apparatus Therefor," Jpn. Pat. 12053737(1998).
  34. Tochimoto, T. and Matsuo, Y., "Low-Density Cured Spherical Phenolic Resin," Jpn. Pat. 12239336(1999).
  35. Tochimoto, T. and Matsuo, Y., "Preparation of Low-Density Globular Phenol Resin cured Product," Jpn. Pat. 12256431(1999).
  36. Matsuo, Y. and Sasaki, T., "Production of Spherical Phenol Resin," Jpn. Pat. 11116648(1997).
  37. Hahn, D., Kim, D. and Kim, H., "Synthesis of Resole-type Phenolic Beads via Suspension Polymerization Technique," Korean Chem. Eng. Res., 51, 279(2013). https://doi.org/10.9713/kcer.2013.51.2.279
  38. Hahn, D. and Kim, H., "The Effect of Reactant Composition on the Synthesis of Resole-Type Phenolic Bead," Korean Chem. Eng. Res., 52, 63(2014). https://doi.org/10.9713/kcer.2014.52.1.63