DOI QR코드

DOI QR Code

Chemical Degradation of e-PTFE Support Used in PEMFC after Fenton Reaction

고분자연료전지에 사용되는 e-PTFE 지지체의 펜톤반응 후 화학적 열화

  • Received : 2020.04.28
  • Accepted : 2020.07.23
  • Published : 2020.11.01

Abstract

The support of the PEMFC membrane plays a key role in improving mechanical durability. The e-PTFE used as a support is chemically stable, so electro-chemical degradation in the PEMFC driving process has been rarely studied. In this study, we investigated whether e-PTFE is chemically stable to radicals and hydrogen peroxide during Fenton reaction. After the Fenton reaction, the main chain of e-PTFE broke, resulting in a change in the chemical structure and morphology of the support, resulting in a decrease in tensile strength. The results of this study showed that electrochemical degradation of the membrane ionomer in the PEMFC process occurs inside the membrane by radicals and hydrogen peroxide, so that electrochemical degradation may also occur at the e-PTFE support in the cell.

고분자연료전지(PEMFC) 고분자막의 지지체는 기계적 내구성 향상에 핵심적인 역할을 한다. 지지체로 사용하는 e-PTFE는 화학적으로 안정하여 PEMFC 구동과정에서 전기화학적인 열화에 대해서는 거의 연구되지 않았다. 본 연구에서는 e-PTFE가 Fenton 반응과정에서 발생한 라디칼과 과산화수소에 화학적으로 안정한지 검토하였다. Fenton 반응 과정에서 e-PTFE의 주사슬이 끊어져 지지체의 화학적 구조와 형태 변화가 발생하였고, 그에 따라 인장 강도가 감소하였다. 실제 PEMFC 구동과정에서 고분자막 이오노머의 전기화학적 열화는 라디칼과 과산화수소에 의해서 고분자막 내부에서 발생하므로, e-PTFE 지지체의 셀 내에서 전기화학적 열화도 발생할 수 있음을 본 연구 결과가 보였다.

Keywords

References

  1. Wang, G., Yu, Y., Liu, H., Gong, C., Wen, S., Wang, X., Tu, Z. "Progress on Design and Development of Polymer Electrolyte Membrane Fuel Cell Systems for Vehicle Applications: A Review," Fuel Processing Technology, 179, 203-228(2018). https://doi.org/10.1016/j.fuproc.2018.06.013
  2. Department of Energy, https://wwwenergygov/ (2016).
  3. New Energy and Industrial Technology Development Organization, http://wwwnedogojp/english/indexhtml (2016).
  4. Hydrogen and Fuel Cell Technology Platform in the European Union, www.HFPeurope.org (2016).
  5. Ministry of Science and Technology of the People's Republic of China, http://wwwmostgovcn/eng (2016).
  6. Gore Enterprise Holdings, Inc, "Ion Conducting Membrane Having High Hardness And Dimensional Stability," PCT/US2002/027338.
  7. Lai, Y. H., Mittelsteadt, C. K., Gittleman,C. S. and Dillard, D. A., "Viscoelastic Stress Analysis of Constrained Proton Exchange Membranes Under Humidity Cycling," J. Fuel Cell Sci. Technol., 6(2), 021002(2009). https://doi.org/10.1115/1.2971045
  8. Spernjak, D., Mukherjee, P. P., Mukundan, R., Davey, J., Hussey, D. S., Jcobson, D. and Borup, R. L., "Measurement of Water Content in Polymer Electrolyte Membranes Using High Resolution Neutron Imaging," ECS Trans., 33(1), 1451-1456(2010).
  9. MacKinnon, S. M., Fuller, Coms, F. D., Schoeneweiss, M. R., Gittleman, C. S., Lai, Y., Jiang, H. R. and Brenner, A. M., "Fuel Cells-Proton Exchange Membrane Fuel Cells $|$ Membranes: Design and Characterization," Encyclopedia of Electrochemical Power Sources, Elsvier, Amsterdam, 2009, Pages 741-754.
  10. Craig, S., Gittleman, C. S., Coms, F. D. and Lai, Y. H., "Polymer Electrolyte Fuel Cell Degradation-Chapter 2 - Membrane Durability: Physical and Chemical Degradation," Academic Press, Boston, 2012, Pages 15-88.
  11. Crum, M. and Liu, W., "Effective Testing Matrix for Studying Membrane Durability in PEM Fuel Cells: Part 2. Mechanical Durability and Combined Mechanical and Chemical Durability," ECS Trans. 3(1), 541-550(2006). https://doi.org/10.1149/1.2356175
  12. Tang, Y., Kusoglu, A., Karlsson, A. M., Santare, M. H., William, S. C. and Johnson, B., "Mechanical Properties of a Reinforced Composite Polymer Electrolyte Membrane and Its Simulated Performance in PEM Fuel Cells," Journal of Power Sources, 175(2), 817-825(2008). https://doi.org/10.1016/j.jpowsour.2007.09.093
  13. Khattra, N. S., Lu, Z., Karlsson, A. M., Santare, M. H., Busby, F. C. and Schmiedel, T., "Time-dependent Mechanical Response of a Composite PFSA Membrane," Journal of Power Sources, 228, 256-269(2013). https://doi.org/10.1016/j.jpowsour.2012.11.116
  14. Kusoglu, A., Santare, M. H., Karlsson, A. M., Cleghorn, S. and Johnson, W. B., "Numerical Investigation of Mechanical Durability in Polymer Electrolyte Membrane Fuel Cells," Journal of The Electrochemical Society, 157(5), B705-B713(2010). https://doi.org/10.1149/1.3328496
  15. Kusoglu, A., Karlsson, A. M., Santare, M. H., Cleghorn, S. and Johnson, W. B.,"Mechanical Behavior of Fuel Cell Membranes Under Humidity Cycles and Effect of Swelling Anisotropy on the Fatigue Stresses," Journal of Power Sources, 170(2), 345-358 (2007). https://doi.org/10.1016/j.jpowsour.2007.03.063
  16. Wang, H. T., Pan, M. and Li, D., "Ex Situ Investigation of the Proton Exchange Membrane Chemical Decomposition," Int. J. Hydrogen Energy., 33(9), 2283-2288(2008). https://doi.org/10.1016/j.ijhydene.2008.01.052
  17. Kinumoto, T., Inaba, M., Nakayama, Y., Ogata, K., Umebayashi, R. and Takaka, A., "Durability of Perfluorinated Ionomer Membrane Against Hydrogen Peroxide," J. Power Sources, 158(2), 1222-1228(2006). https://doi.org/10.1016/j.jpowsour.2005.10.043
  18. Kim, T. H., Lee, J. H., Cho, G. J. and Park, K. P., "Degradation of Nafion Membrane by Oxygen Radical," Korean Chem. Eng. Res., 44(6), 597-601(2006).
  19. Pearman, B. P., Mohajeri, N., Slattery, D. K., Hampton, M. D., Seal, S. and Cullen, D. A., "The Chemical Behavior and Degradation Mitigation Effect of Cerium Oxide Nanoparticles in Perfluorosulfonic Acid Polymer Electrolyte Membranes," Polym. Degrad. Stab., 98(9), 1766-1772(2013). https://doi.org/10.1016/j.polymdegradstab.2013.05.025
  20. Hao, J., Jiang, Y., Gao, X., Xie, F., Shao, Z. and Yi, B., "Degradation Reduction of Polybenzimidazole Membrane Blended with $CeO_2$ as a Regenerative Free Radical Scavenger," J. Membr. Sci., 522(15), 23-30(2017). https://doi.org/10.1016/j.memsci.2016.09.010
  21. Zhu, H., Pei, S., Tang, J., Li, H., Wang, L., Yuan, W. and Zhang, Y., "Enhanced Chemical Durability of Perfluorosulfonic Acid Membranes Through Incorporation of Terephthalic Acid as Radical Scavenger," J. Membr. Sci., 432, 66-72(2013). https://doi.org/10.1016/j.memsci.2012.12.050
  22. Chang, Z., Yan, H., Tian, J., Pan, H. and Pu, H., "The Effect of Electric Field on the Oxidative Degradation of Polybenzimi Dazole Membranes Using Electro-fenton Test," Polymer Degradation and Stability, 138, 98-105(2017). https://doi.org/10.1016/j.polymdegradstab.2017.02.014
  23. Hwang, B. C., Oh, S. H., Lee, M. S., Lee, D. H. and Park, K. P., "Decrease in Hydrogen Crossover through Membrane of Polymer Electrolyte Membrane Fuel Cells at the Initial Stages of an Acceleration Stress Test," Korean J. Chem. Eng., 35(11), 2290-2295(2018). https://doi.org/10.1007/s11814-018-0142-5
  24. Oh, S. H., Kwag, A. H., Lee, D. W., Lee, M. S., Lee, D. H. and Park, K. P., "Comparison of Membrane Degradation of PEMFC by Fenton Reaction and OCV Holding," Korean Chem. Eng. Res., 57(6), 768-773(2019). https://doi.org/10.9713/kcer.2019.57.6.768