DOI QR코드

DOI QR Code

Development of a Squat Angle Measurement System using an Inertial Sensor

관성 센서기반 스쿼트 각도 측정 융합 시스템 개발

  • Joo, Hyo-Sung (Department of Biomedical Engineering, School of Electrical Engineering, University of Ulsan) ;
  • Woo, Ji-Hwan (Department of Biomedical Engineering, School of Electrical Engineering, University of Ulsan)
  • 주효성 (울산대학교 의용생체공학전공) ;
  • 우지환 (울산대학교 전기공학부 의공학전공)
  • Received : 2020.08.19
  • Accepted : 2020.10.20
  • Published : 2020.10.28

Abstract

The squat is an exercise that can effectively improve the muscle strength of the lower body, which can be performed in a variety of places without restrictions on places including homes. However, injuries due to incorrect motion or excessive angles are frequently occurring. In this study, we developed a single sensor-based squat angle measurement system that can inform the squat angle according to the correct motion during the squat exercise. The sensor module, including the acceleration sensor and the gyro sensor, is attached to the user's thigh. The squat angle was calculated using the complementary filter complementing the pros and cons of acceleration and gyro sensor. It was found that the calculated squat angle showed the proper correlation compared to the squat angle measured by a goniometer, and the influence of the coefficient of the complementary filter on the accuracy was evaluated.

스쿼트는 장소에 제약 없이 효과적으로 하체 근력을 증진시킬 수 있는 운동이다. 스쿼트 시 잘못된 자세로 인한 부상이 빈번하게 발생하고 있으며, 부상을 예방하기 위해서는 적절한 각도를 유지하며 운동하는 것이 중요하다. 본 연구에서는 허벅지에 착용된 단일 관성 센서 모듈을 이용하여 스쿼트 각도를 측정할 수 있는 시스템을 개발하고 검증하였다. 스쿼트 각도를 측정하기 위해 각 관성 센서(가속도 센서, 자이로 센서)의 장단점을 상호 보완 하는 상보필터 알고리즘을 사용하였고, 임상 실험을 통해 각 상보필터 계수에 따른 스쿼트 각도의 정확도를 평가하였다. 분석 결과, 최적의 상보필터 계수를 기반으로 계산된 스쿼트 각도는 측각기에서 측정한 각도와 상관 계수 0.623와 편향 오차 -5.6°로 유의한 상관관계를 보였다.

Keywords

References

  1. R. F. Escamilla. (2001). Knee biomechanics of the dynamic squat exercise. Medicine & Science in Sports & Exercise, 33(1), 127-141. DOI : 10.1097/00005768-200101000-00020
  2. G. Kathiresan, N. Jali, N. R. Afiqah, N. A. Aznie, N. Fidieyama & N. Osop. (2010). The relationship between ankle joint flexibility and squatting knee flexion posture in young Malaysain men. World Journal of Sport Sciences, 3(3), 226-230.
  3. M. W. Kevin, L. A. George, D. W. Mike, W. P. Larry & M. G. Kim. (2005). The effect of short-term unilateral and bilateral lower-body resistance training on measures of strength and power. Journal of Strength and Conditioning Research, 19(1), 9-15. DOI : 10.1519/14173.1
  4. M. Kritz, J. Cronin & P. Hume. (2009). The bodyweight squat: a movement screen for the squat pattern. Strength and Conditioning Journal, 31(1), 76-85. DOI : 10.1519/SSC.0b013e318195eb2f
  5. D. E. Toutoungi, T. W. Lu, A. Leardini, F. Catani & J. J. O'Connor. (2000). Cruciate ligament forces in the human knee during rehabilitation exercises. Clinical Biomechanics, 15, 176-187. DOI : 10.1016/s0268-0033(99)00063-7
  6. B. J. Schoenfeld. (2010). Squatting kinematics and kinetics and their application to exercise performance. Journal of Strength and Conditioning Research, 24(12), 3497-3506. DOI : 10.1519/JSC.0b013e3181bac2d7
  7. A. Hemmerich, H. Brown, S. Smith, S. S. K. Marthandam & U. P. Wyss. (2006). Hip, knee, and ankle kinematics of high range of motion activities of dailiy living. Journal of Orthopaedic Research, 24, 770-781. DOI : 10.1002/jor.20114
  8. S. Kim, O. Kwon, K. Park, I. Jeon & J. Weon. (2015). Lower extremity strength and the range of motion in relation to squat depth. Journal of Human Kinetics, 45, 59-69. DOI : 10.1515/hukin-2015-0007
  9. C. M. Powers. (2003). The influence of altered lower-extremity kinematics on patellofemoral joint dysfunction: a theoretical perspective. Journal of Orthopaedic and Sports Physical Therapy, 33, 639-646. DOI : 10.2519/jospt.2003.33.11.639
  10. M. O. Reilly, B. Caulfield, T. Ward, W. Johnston & C. Doherty. (2018). Wearable inertial sensor systems for lower limb detection and evaluation: a systematic review. Sports Medicine, 48(5), 1221-1246. DOI : 10.1007/s40279-018-0878-4
  11. Z Tang, M. Sekine, T. Tamura, N. Tanaka, M. Yoshida & W. Chen. (2015). Measurement and estimation of 3D orientation using magnetic and inertial sensors. Advanced Biomedical Engineering, 4, 135-143. DOI : 10.14326/abe.4.135
  12. D. Giansanti, G. Maccioni & Vello Macellari. (2005). The development and test of a device for the reconstruction of 3-D position and orientation by means of a kinematic sensor assembly with rate gyroscopes and accelerometers. IEEE Transaction on Biomedical Engineering, 52(7), 1271-1277. DOI : 10.1109/tbme.2005.847404
  13. H. Zhou, T. Stone, H. Hu & N. Harris. (2008). Use of multiple wearable inertial sensors in upper limb motion tracking. Medical Engineering and Physics, 30, 123-133. DOI : 10.1016/j.medengphy.2006.11.010
  14. C. N. K. Nam, H. J. Kang & Y. S. Suh. (2014). Golf swing motion tracking using inertial sensors and a stereo camera. IEEE Transaction on Instrumentation and Measurement, 63(4), 943-952. DOI : 10.1109/TIM.2013.2283548
  15. J. Kodama & T. Watanabe. (2016). Estimation of inertial sensor-based estimation methods of lower limb joint moments and ground reaction force: results for squat and sit-to-stand movements in the sagittal plane. Sensors, 16, 1209. DOI : 10.3390/s16081209
  16. V. Bonnet, C. Mazza, P. Fraisse & A. Cappozzo. (2012). A least-squares identification algorithm for estimating squat exercise mechanics using a single inertial measurement unit. Journal of Biomechanics, 45, 1472-1477. DOI : 10.1016/j.jbiomech.2012.02.014
  17. R. Jim, T. Dominic, S. James, C. Andrew & H. Colin. (2008). A biomechanical investigation of a single-limb squat: implications for lower extremity rehabilitation exercise. Journal of Athletic Training, 43, 477-482. DOI : 10.4085/1062-6050-43.5.477