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CONJUGACY INVARIANTS OF QUATERNION MATRICES

JOONHYUNG KIM AND QIANGHUA LUO

ABSTRACT. In this paper, we find new conjugacy invariants of SI(3,H).
This result is a generalization of Foreman’s result for SI(2, H).

1. Introduction

It is well known from elementary linear algebra that the trace and the deter-
minant are conjugacy invariants when entries of the matrices are real or com-
plex numbers. However, for quaternion matrices, we cannot apply the same
arguments because of the non-commutativity of quaternions. In Theorem 4.1
of [2], Foreman finds some conjugacy invariants of S1(2,H). There is an error
in his computation and it is corrected in [7]. Those conjugacy invariants are
used to classify quaternionic Mdbius transformations ([2], [7]). Furthermore,
traces play an important role in the study of quaternionic hyperbolic Kleinian
groups in dimension two ([3-5]). For the study of quaternionic Mobius trans-
formations and quaternionic hyperbolic Kleinian groups in higher dimensions,
it is a crucial step to find conjugacy invariants.

In this paper, we generalise Foremann’s result to SI(3, H). Roughly speaking,
S1(3,H) is the collection of all 3x 3 quaternionic matrices whose complex adjoint
matrix is of determinant 1 (see the following Section for the details). Our main
theorem is the following.

Theorem 1.1. Let

a b c
M=|d e f
g h 1

be an arbitrary matriz in SI(3,H). Then the following functions on SI(3,H)
are conjugacy invariants:

Fi(M) = 2|b]*Re(dgf) + 2|c|* Re(gdh) + 2|d|* Re(bhe) + 2| f|* Re(hbg)
+ 2|g|*Re(cfb) + 2|h|?Re(fed) + 2|al* Re(ehf + Lfh)
—2Re(a)(|e[*[1|* + | f|*|h|* — 2Re(ehlf)) + 2|e|* Re(age + Icg)
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— 2Re(e)(|a?1]* + |c|*|g|* — 2Re(aglec)) + 2|I|* Re(adb + ebd)
—2Re(l)(|al?|e|* + [b]*|d|* — 2Re(adeb))

— 2Re(aclhd + glebd + eflgb 4 hlfdb)

— 2Re(debcg + abefg + fehge + lhédc)

— 2Re(badfh + edach + caghf + lgabf),

F2(M) = 2Re(gdbe+abfg+achd+befg+edch+bdfh+ fegh+ fbgl+edhl)
+ (4Re(e)Re(l) — 2Re(fh))|a|* — 4Re(e) Re(age) — 4Re(l) Re(adb)
+ (4Re(a)Re(l) — 2Re(cg))le|* — 4Re(a)Re(eh f) — 4Re(l) Re(ebd)
+ (4Re(a)Re(e) — 2Re(bd))|l|* — 4Re(e) Re(leg) — 4Re(a)Re(Lfh)
+af?le]* + [b*|d|* — 2Re(adeb) + |al?|I[* + |c]*|g|*

— 2Re(aglc) + \e|2\l|2 + |h\2|f|2 — 2Re(ehlf),

F3(M) = —2Re(a)|e|* — 2Re(a)|l|* — 2Re(e)|al* — 2Re(e)|l|* — 2Re(l)|al?
—2Re(l)|e|* + 4Re(e) Re(cg) + 4Re(a)Re(fh) + 4Re(1) Re(bd)
— 8Re(a)Re(e) Re(l)
+ 2Re(adb + age + ebd + ehf +1eg + Ifh — bfg — dch),
Fu(M) = |a]* + |e|* + |I|* + 4Re(a) Re(e) + 4Re(a) Re(l) + 4Re(e) Re(l)
— 2Re(bd) — 2Re(cg) — 2Re(fh),
Fs5(M)= —2Re(a+e+1).
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2. Preliminaries

In this section, we briefly present basic definitions and properties of quater-
nions and quaternion matrices. We recommend [1,6,8] for more details.

2.1. Quaternions

The skew field H is a real vector space with the basis 1,4, 7, k. Multiplication
is defined by the following principles:
PP==k=-1, ij=k=—ji
For an arbitrary element a = a1 + a2t + agj + a4k € H with ay,a9,a3,a4 €
R, its real part Re(a) is a1 and its vectorial part (or imaginary part) v(a)
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is agi + azj + ask. The conjugate and the norm of a are defined by a =
Re(a) —v(a) = a1 — agi — azj — ask and |a| = \/a} + a3 + a3 + a3 respectively.
The inverse of a is a™! = a/|al?.

2.2. Quaternion matrices

Let M, xn(H) denote the collection of all m x n matrices with quaternion
entries. For A = (as) € Mpyxn(H) and ¢ € H, we define ¢4 = (qgas) and
Aq = (astq). In the case of m = n, we denote M,,x,(H) by M, (H). For
A,B,C € M,(H), ABC = (AB)C = A(BC) holds. A is called invertible if
AB = BA = I for some B € M,,(H), where I denotes the identity matrix. The
following is a well known fact.

Proposition 2.1 (Proposition 4.1 in [8]). For A, B € M, (H), if AB = I, then
BA=1.

As we express a quaternion a = a1 +asi+agzj+ask = (a1 +a2i)+ (az+aqi)j,
a quaternion matrix also can be expressed as A = A; + Asj € M, (H), where
A1, Ay € M, (C). Then, the matrix

_( A A
XA = ( A, A > € M3,(C)

is called the complex adjoint matriz of A, and this is uniquely determined by
A. We define the determinant of A to be the determinant of x 4. The following
proposition gives a necessary and sufficient condition for a matrix in M, (H) to
be invertible.

Proposition 2.2 (Proposition 8.1 in [8]). A € M, (H) is invertible if and only
if det(xa) # 0.

By computing the determinant of a 3 x 3 quaternion matrix, we get the
following result.

Theorem 2.3. Let

a b ¢
M=|d e f
g h 1

be a quaternion matriz in Ms(H). Then M is invertible if and only if the
following condition is satisfied:

Fo(M) = |a*[el*|U[* + |al* f*[Af* + [b[d?[1]* + b1%| £12]g]* + lc[?|d]?|h]?
+ |c?|e?|g|* + 2Re(befdgh + éfeagh + cbedgl + febagl + fdabhl
+ eadehl) — 2|a|? Re(ehl f) — 2|b|> Re(dgl f) — 2|c|* Re(dghe)
— 2|d|*Re(bhic) — 2|e|* Re(agle) — 2| f|* Re(aghb) — 2|g|* Re(befe)
— 2|h|?Re(adfc) — 2|I|* Re(adeb) # 0.
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In what follows, we use SI(3, H) to denote the collection of all 3x3 quaternion
matrices M with Fo(M) = 1.
According to [1,2], one can embed H into Max2(C) by

PN L(a) . a1+ ast  asz + aqt
\ —as+tagi ay—azi )’

By replacing every entry as; of A by the 2 x 2 complex matrix L(a), we can
embed Si(n,H) into SI(2n,C): A — L(A). For the embed function L(-), the
relation L(AB) = L(A)L(B) holds.

3. Proof

In this section, we prove Theorem 1.1 and Theorem 2.3.

Proof of Theorem 1.1. We follow the same strategy in [2]. Let us consider the
group homomorphism embedding SI(3,H) into SI(6, C):

a; +agi az+aqgi by + bai by +byi 1 +coi ez +cqi

a b ¢ —az+aqi ay —agi  —b3+bgi by —byi  —cz3+cai ¢ —cai
= — dy+dyi  dz+dyi ey texi ezteqi fr4 foi [zt fai

M = d e f — L(M) - —ds+dyi dy —doi  —es+eqi ey —egi —fa+ fai f1— fai |
g h 1 g1+ g2t gs+gai  hi+hei hy+ha L+l I3+l

—gs+gai g1 — g2t —hg+hai hy—hoi =g+l b —lai
where a = (a1 + agi) + (a3 + aqi)j, ..., 1 = (l1 +129) + (I3 + 147)j. By calculating
the characteristic polynomial of L(M), we will obtain the conjugate invariant
functions. Let o, be the sum of all (n — ¢)-principal minors of M for ¢ =
0,1,2,3,4,5. Then

28+ a5m5 + 044:104 + a3x3 + a2x2 +aix+a9g=0
is the characteristic polynomial of L(M), where o, = (—1)""‘o, for ¢+ =
0,1,2,3,4,5. Moreover, «,’s are conjugate invariant functions in the variables
ay,az, - ,ls,ly. We claim that F,(M) = «, for . =0,1,2,3,4,5.
For + = 5, we have
a5 = —(a1+agi+a1 —agit+ert+eit+e; —ext+1 +li+ 1 —lgi)
= —2Re(a+e+1)
= F5(M).
For ¢ = 4, it is easy to see that each 2-principal minor of L(M) must be a
2-principal minor of the three following matrices:

a1+ ast  asz+ aqt by + boi b3 + byi

M, = —as + a4i a) — agi —b3 + b4i b1 - bzi
1= dl + dzl d3 + d4Z er + €2i es + €4i ’
—d3 + d4l d1 — dQZ —e3 + €4i €1 — 62i
a1 +ast az+agt  c1+cot c3+ cqt
—as + a4i ay — agi —C3 + C4i C1 — Czi
My = ; : : |
g1+g2i  gstgai li+la I3+l

—g3+gat g1 —got —lz3+lai I —lot
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e1+exi  e3teqi  fi+ foi fa+ fai

M — —e3teqt er—eal —f3+ fai f1— foi
hi+ hot  hsg 4+ hyi l1 + 1ot I3 + 147
—h3s+hagit hy—hot —lzs+li 11 —la

The sum of all 2-principal minors of M; is

a1 + CLQ’i b1 + ng

‘a|2 + a1 + ast b3 + byt
d1 + dQ’L e + €2i —d3 + d4Z €1 — egi

2 a1 — agt  —bg + byt a1 — ast by — bai

+ |€| t d3 + d4Z er + 622. dl — dQ’L €1 — 62i

= |a|* + |e|* + 4aie; — 2Re(bd).
In the same way, the sum of all 2-principal minors of M, is
la® + [1)? + 4a1l; — 2Re(cg)
and the sum of all 2-principal minors of M3 is
le|? + |1|* + 4e1ly — 2Re(fh).
Note that |a|?, |e|? and |I|> are multiply counted. Hence we have
ay = |a|* + |e|* + |I|* + 4Re(a)Re(e) + 4Re(a)Re(l) + 4Re(e) Re(l)
— 2Re(bd) — 2Re(cg) — 2Re(fh)
= Fy(M).

For ¢ < 3, it is difficult to compare a, and F,(M) directly. According to [6],
one can also embed H into S1(4,R) by

aj —ag a4 —ag
. . a aq —a3 —ayg
a = ay + agi + agk + asj — LR(a) = Cay A A —ay

ag a4 ag a

Moreover, LR(ab) = LR(a)LR(b) and LR(ab)(1,1y = Re(ab) for a,b € H.
We then use a computer to verify the other invariants (see Appendix for the
details). O

Proof of Theorem 2.3. Similar to the above proof, we verify that det(L(M)) =
Fo(M) by a computer. We thus finish the proof by Proposition 2.2. O

4. The review of SI(2,H)

In this section, we review Foreman’s result and show that our results (The-
orem 1.1 and Theorem 2.3) imply Foreman’s result. The set SI(2,H) is the
collection of all 2 X 2 quaternion matrices

(2 4)
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with a(A) = |a|?|d|? + |b?|c|?> — 2Re[acdb] = 1. One can verify that a(A) is
equal to the determinant of the complex adjoint matrix of A. In [2], Foreman
proves the following theorem (we use the corrected version in [7]).

Theorem 4.1 (Foreman). Suppose that

(2 4)

is an element in SI(2,H). Then the following functions on SI(2,H) are conju-
gate invariant:

B(A) := Re[(ad — bc)a + (da — cb)d],
Y(A) := |a +d|* + 2Relad — bd],
§(A) := Re[a + d].

a b 0 b
T(A):=|(c d 0 forA:<“ d)eSl(2,H).
00 1 ¢

Proof. Let

Then F(SZ(Q, H)) is a subgroup of S{(3,H) and F;’s are conjugacy invariants on
F(SZ(Q,H)) for i = 0,1,2,3,4,5. By applying Theorem 1.1 and Theorem 2.3,
we have

Fo(T(A)) = |al*|d|* + [b]?|c]* — 2Re(acdb) = a(A) = 1,
Fi1(T(A)) = —2Re(a)|d|* — 2Re(d)|a|* + 2Re(acb + dbe)
—2(|al?|d|* + |b]?|c|* — 2Re(acdb))
— 2Re(a)|d|* — 2Re(d)|al* + 2Re(acb + dbe) — 2a(A)
= —2B(4) -2,
4Re(d)|a|* — 4Re(ach) + 4Re(a)|d|* — 4Re(dbe) + 4Re(a)Re(d)
— 2Re(be) + |al?|d|* + |b|*|c|* — 2Re(acdb) + |a|* + |d|?,
— 4B(A) +7(A) + a(4) = 4B(A) + 4(4) + 1,
F3(I(A)) = —2Re(a)|d|” — 2Re(a) — 2Re(d)|a]* — 2Re(d) — 2|a|* — 2|d|?
+ 4Re(bc) — 8Re(a)Re(d) + 2Re(acb + dbe)
=~ 25(A) — 24(4) — 26(4),
F1(T(A)) =la* +|d|* + 1 + 4Re(a)Re(d) + 4Re(a) + 4Re(d) — 2Re(bc)
=~v(A)+40(A) + 1,
F5(I(A)) =—2Re(a+d) — 2 = —25(A) — 2.

Note that SI(2,H) and I'(S{(2,H)) are isomorphic. Observing the above
identities, since F;(I'(A)) = —28 — 2 is a conjugate invariant, 8 is a conjugate
invariant. Furthermore, since Fo(I'(A4)) = 48+~ +1 is a conjugate invariant,

F(T(4))
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is a conjugate invariant. Similarly, from F5(T'(A)) = —20 — 2, 4 is a conjugate
invariant. Hence we conclude that 3, 7, § are conjugate invariants in SI(2, H).
O

5. A conjugacy invariant in high dimensions

Let Si(n,H) be the collection of all n x n quaternionic matrices whose com-
plex adjoint matrix is of determinant 1. We have the following result.

Theorem 5.1. Let M = (m;j)nxn be an arbitrary matriz in Si(n,H). Then
the following function on Sl(n,H) is an invariant:

n
Z |m“|2 +4 Z Re(mii)Re(mjj) -2 Z Re(mijmji).
i=1 i<j i<j
Proof. One can obtain this invariant by calculating the characteristic polyno-
mial of L(M). This conjugation invariant is equal to the sum of all 2-principal
minors of L(M). For an arbitrary 2-principal minor of L(M), it must be a
2-principal minor of the matrix

M, - ( L(mi)  L(mg;) >
L(my;) L(my;)
for some 1 <4 < j < n. The sum of all 2-principal minors of M;; is
|mii|2 + |mjj|2 + 4Re(mii)Re(mjj) — 2Re(mijmﬁ).
On the other hand, |m;|? is multiply counted for i = 1,2,...,n. Hence the

sum of all 2-principal minors of M is

n

Z |mai|* + 42 Re(m;;)Re(mjj;) — 2 Z Re(mizmy;).

i=1 i<j i<j O
6. Appendix

Below is a Mathematica program. The readers can use it to verify the
invariants.

al +4a2 a3+iad Dbl+ib2 b3 +ibd cl+ic2 c3+icd
—a3+ia4d al—1a2 —-b3+ib4d bl —ib2 —c3+icd cl—ic2
dl+id2 d3+id4d el+ie2 e3+ied fl+if2 f3+4if4 |,
—d3+14d4 dl —id2 —e3+ied el —ie2 —f3+ifd f1 —if2 ’
gl+ig2 g3+igd hl+¢h2 h3+dh4d 11+412 13 +il4
—g3+igd gl —ig2 —h3+4ih4 hl—4h2 —I134idl4 11 —112

14 = IdentityMatriz[4];

Al = {{al,—a2,a4,—a3},{a2,al, —a3, —ad},{—a4,a3,al, —a2},{a3,a4,a2,al}};
A2 = Dot[Al, —I4] + 2Diagonal Matriz[{al,al,al,al}];

B1 = {{b1, -2, b4, —b3}, {b2,b1, —b3, —b4}, {—b4, b3, b1, —b2}, {b3, b4, b2,b1}};
B2 = Dot[B1, —I4] 4+ 2Diagonal M atriz[{bl, b1, b1, bl}];

LM =
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C1 = {{cl,—c2,c4,—c3},{c2,cl, —c3,—cd},{—c4,c3,cl, —c2}, {3, c4,c2,cl}};

C2 = Dot|C1, —I4] + 2Diagonal M atriz|cl,cl, cl,cl];

D1 = {{dl, —d2,d4, —d3}, {d2,d1, —d3, —d4}, {—d4,d3, d1, —d2}, {d3, d4, d2, d1}};
D2 = Dot[D1, —I4] 4+ 2Diagonal Matriz[{dl,dl,d1, d1}];

E1 = {{el,—e2,e4,—e3},{e2,el, —e3, —ed}, {—ed,e3,el, —e2},{e3,e4,e2,el}};
E2 = Dot|E1, —I4] + 2Diagonal Matriz[{el,el,el,el}];

F1= ({1, — 2, f4,— F31, 112, 1, 3, 4}, {—F4, £3, 1, ~ 12}, (/3. 4, 2, 1} );
F2 = Dot[F1, —I4] + 2Diagonal Matriz[{ f1, f1, f1, f1}];

G1 = {{g1,—92,94,—93},{92, 91, 93, —g4},{—04, 93,91, —92}, {93, 94, 92, g1} };
G2 = Dot|G1, —I4] + 2Diagonal M atriz[{gl, g1, g1, g1}];

H1 = {{hl,—h2,hd, —h3},{h2,h1, —h3, —h4},{—h4,h3, h1,—h2},{h3, h4,h2, h1}};
H?2 = Dot[H1,—I4] 4+ 2Diagonal Matriz[{h1, h1, h1, h1}];

L1 = {{11,-12,14,—13},{12,11, —13, —14},{—14,13,11, —12},{13,14,12,11} };

L2 = Dot|L1, —I4] + 2Diagonal M atriz[{11,11,11,11}];

ag = Det[LM];

oy = =Tr[Minors[LM, 5]];

ag = Tr[Minors[LM, 4]];

ag = —Tr[Minors[LM, 3]];

ay = Tr[Minors|[LM, 2]];

a5 = =Tr[Minors[LM,1]];

We use Al,A2,...,L1,L2 to denote LR(a),LR(G),...,LR(),LR(I). For a
matrix M, M[[m,n]] is the entry of M in the m-th row and n-th column. From
the definition of LR, A1[[1,1]] is the real part of a. For matrices My, Ms, ...,
M., Dot[My, Ms, ..., M,] is the standard matrix product My My - - - M,,. From
the property of LR, Dot[A1, By] is equal to LR(ab) and Dot[A;, B1][[1,1]] is
Re(ab). Tr[Minors[LM,]] is the sum of all (6 — ¢)-principal minors of LM for
t=0,1,2,...,5. If one run the following commands:

Simplify[—2 = AL[[1,1]] — 2 % E1[[1,1]] — 2 = L1[[1, 1] — as].

One will obtain 0. Hence as = F5(M). Similarly, one can verify the other
invariants.

References

[1] H. Aslaksen, Quaternionic determinants, Math. Intelligencer 18 (1996), no. 3, 57—65.
https://doi.org/10.1007/BF03024312

[2] B. Foreman, Conjugacy invariants of S1(2,H), Linear Algebra Appl. 381 (2004), 25-35.
https://doi.org/10.1016/j.1aa.2003.11.002

[3] J. Kim, Quaternionic hyperbolic Fuchsian groups, Linear Algebra Appl. 438 (2013), no. 9,
3610-3617. https://doi.org/10.1016/j.1aa.2013.02.001


https://doi.org/10.1007/BF03024312
https://doi.org/10.1016/j.laa.2003.11.002
https://doi.org/10.1016/j.laa.2013.02.001

CONJUGACY INVARIANTS OF QUATERNION MATRICES 1327

[4] S. Kim and J. Kim, Complezx and quaternionic hyperbolic Kleinian groups with real trace
fields, J. Lond. Math. Soc. (2) 93 (2016), no. 1, 101-122. https://doi.org/10.1112/
jlms/jdv063

, A characterization of quaternionic Kleinian groups in dimension 2 with complex
trace fields, Algebr. Geom. Topol. 18 (2018), no. 2, 957-974. https://doi.org/10.2140/
agt.2018.18.957

[6] J. P. Morais, S. Georgiev, and W. SproBig, Real Quaternionic Calculus Handbook,
BirkhSprauser, Basel, 2014.

[7] J. R. Parker and I. Short, Conjugacy classification of quaternionic Mobius transforma-
tions, Comput. Meth. Funct. Th. 9 (2009), no. 1, 13-25.

[8] F. Zhang, Quaternions and matrices of quaternions, Linear Algebra Appl. 251 (1997),
21-57. https://doi.org/10.1016/0024-3795(95)00543-9

(5]

JOONHYUNG Kim

DEPARTMENT OF MATHEMATICS EDUCATION
CHUNGNAM NATIONAL UNIVERSITY
DAEJEON 34134, KOREA

Email address: calvary@snu.ac.kr

QIANGHUA Luo

SCHOOL OF MATHEMATICS

HUNAN UNIVERSITY

CHANGSHA 410082, CHINA

Email address: Luo.QHGhnu.edu.cn


https://doi.org/10.1112/jlms/jdv063
https://doi.org/10.1112/jlms/jdv063
https://doi.org/10.2140/agt.2018.18.957
https://doi.org/10.2140/agt.2018.18.957
https://doi.org/10.1016/0024-3795(95)00543-9

