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A NEW CLASS OF RIEMANNIAN METRICS ON TANGENT

BUNDLE OF A RIEMANNIAN MANIFOLD

Amir Baghban and Saeed Hashemi Sababe

Abstract. The class of isotropic almost complex structures, Jδ,σ , define

a class of Riemannian metrics, gδ,σ , on the tangent bundle of a Riemann-
ian manifold which are a generalization of the Sasaki metric. This paper

characterizes the metrics gδ,0 using the geometry of tangent bundle. As

a by-product, some integrability results will be reported for Jδ,σ .

1. Introduction

Assume (M, g) is a Riemannian manifold and ∇ represents the Levi-Civita
connection of g and π : TM → M is the tangent bundle of M . We denote by
Xh and Xv the horizontal and vertical lifts of a vector field X on M , respec-
tively. There are many papers [1, 2, 6, 7, 9, 10, 12–16] which are on differential
geometric structures on tangent and cotangent bundles like the Riemannian
metrics, harmonic sections, almost complex structures, connections and so on.

As a fundamental ingredient in studying the Riemannian manifolds, the
almost complex structures have various applications in physics, signal process-
ing and information geometry. Kähler manifolds as a special class of complex
manifolds play an important role in signal processing. Choi and Mullhaupt [8]
proved a correspondence between the information geometry of a signal filter
and a Kähler manifold; the information geometry of a minimum-phase linear
system with a finite complex cepstrum norm is a Kähler manifold. In [17], the
authors investigated the necessary conditions for a divergence function on a
manifold M such that the manifold M ×M admits a Kähler structure. We
know that starting with a metrical almost complex manifold, one can get to
a symplectic manifold and vice versa; a symplectic manifold is equivalent to
a metrical almost complex manifold. Lisi [11] investigated the applications
of pseudo-holomorphic curves to problems in Hamiltonian dynamics using the
structures of symplectic manifolds.
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The classical almost complex structure J1,0 : TTM → TTM is defined by

J1,0(Xh) = Xv, J1,0(Xv) = −Xh

for vector field X on M . In [3], Aguilar generalized this structure to a class of
almost complex structures and called them isotropic almost complex structures
Jδ,σ with definition

Jδ,σ(Xh) = αXv + σXh, Jδ,σ(Xv) = −σXv − δXh

for functions α, δ, σ : TM → R which satisfy αδ − σ2 = 1. He showed that
there exists an integrable isotropic almost complex structure on an open subset
A ⊂ TM if and only if the sectional curvature of (π(A), g) is constant.

Besides, he introduced special class of Riemannian metrics gδ,σ constructed
by the Liouville 1-form Θ on TM together with the isotropic almost complex
structure Jδ,σ with definition

gδ,σ(A,B) = dΘ(Jδ,σA,B), A,B ∈ TTM.

They are generalizations of the Sasaki metric and in some cases, intersect the
class of g-natural metrics. It is easy to see that (TM, gδ,σ, Jδ,σ) is a Hermitian
manifold and so in some cases are Kähler manifolds.

We will achieve some results on the integrability of Jδ,σ when the base man-
ifold is the Euclidean space and the hyperbolic one using the complex function
z : TM → C defined by z(u) = σ+i

δ (u). These results characterize the inte-
grable isotropic almost complex structures in a comprehensible concepts com-
pared with the Aguilar’s ways. The following propositions state the results.

Proposition 1.1. Let Jδ,σ be an isotropic almost complex structure on TRn =
R2n. Then Jδ,σ is integrable if and only if z : (R2n, Jδ,σ)→ C is a holomorphic
mapping.

Let (Hn, g) be the hyperbolic space and let e1, . . . , en be an orthonormal
frame field on Hn. Suppose vi : THn → R are functions defined by vi(up) =
g(ei(p), up) for i = 1, . . . , n and up ∈ TpHn. Using this notations we have:

Proposition 1.2. Let Jδ,σ be an isotropic almost complex structure on THn.
Then one can claim that Jδ,σ is integrable if and only if d(−z2+v1

2+ · · ·+vn2)
is a (1, 0)-form on (THn, Jδ,σ).

Note that (1, 0)-forms are zero on vectors V = A+
√
−1Jδ,σA ∈ T(0,1)(TM)

for A ∈ TTM .
Unlike the classical researches on the geometry of tangent bundle, we would

like to characterize the metrics gδ,σ under some geometric conditions. In the
following theorems, we will show that the metric gδ,0 takes a special form by
considering some conditions on the tangent bundle and base manifold.

Theorem 1.3. Let Jδ,0 be an isotropic almost complex structure on the tangent
bundle of the Euclidean space (Rn, g). Then (TRn, gδ,0) is an Einstein manifold
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if and only if

gδ,σ(Xh, Y h) = α0g(X,Y ),

gδ,σ(Xh, Y v) = 0,

gδ,σ(Xv, Y v) =
1

α0
g(X,Y ),

where α0 ∈ R is a constant number.

Theorem 1.4. Let Jδ,0 be an isotropic almost complex structure on the tangent
bundle of (M, g) and let (TM, gδ,0) be of constant sectional curvature. Then

gδ,σ(Xh, Y h) = α0g(X,Y ),

gδ,σ(Xh, Y v) = 0,

gδ,σ(Xv, Y v) =
1

α0
g(X,Y ),

where α0 ∈ R is a constant number.

These theorems will be proved after four technical lemmas.
This paper is organized as follows: Section 2 is devoted to an introduction

to the isotropic almost complex structures and the Riemannian metrics gδ,σ
together with the proofs of Propositions 1.1 and 1.2. In Section 3, Theorems
1.3 and 1.4 will be proved. Section 4 is an appendix which contains some
needed formulas.

2. Isotropic almost complex structures and related metrics

This section is devoted to study integrability conditions of Jδ,σ and to in-
troduce the induced metrics gδ,σ. Note that manifold (M, g) will be supposed
to be of arbitrary sectional curvature unless we indicate that it is constant.

2.1. Integrable almost complex structures

Aguilar [3] introduced two classes of integrable structures Jδ,σ on the tangent
bundle of a space form (M, g) defined by the following two classes of functions

δ−1 =
√

2kE + b, σ = 0,

δ−2 =
1

2
{2kE + b+

√
(2kE + b)2 + 4a2k2}, σ = akδ2, a 6= 0,

where E(u) = 1
2g(u, u) is the energy density and k is the sectional curvature of

(M, g) which is constant. It is worth mentioning that these classes are not the
all of integrable structures. Aguilar proved that the necessary and sufficient
conditions for integrability of Jδ,σ is the following equation

dσ + kδΘ−
√
−1(1−

√
−1σ)δ−1dδ ≡ 0 mod {ζ1, . . . , ζn},(1)

where ζi, i = 1, . . . , n, supposed to be a basis for (1, 0)-forms of (TM,Jδ,σ) and
k is the constant sectional curvature.
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Now, let (x1, . . . , xn, y1, . . . , yn) be the standard coordinate system on TRn.
Due to the definition of z, it plays an important role in integrablity of Jδ,σ. In
[4], the authors proved that Jδ,σ : TTRn → TTRn is integrable if and only if

∂z

∂xl
+ z

∂z

∂yl
= 0 ∀ l, 1 ≤ l ≤ n.(2)

The proof of Proposition 1.1 shows this matter a little more.

Proof of Proposition 1.1

Let Vk = ∂
∂xk +

√
−1Jδ,σ

∂
∂xk = (1 +

√
−1σ) ∂

∂xk +
√
−1α ∂

∂yk
for k = 1, . . . , n

be a basis for the space T(0,1)(TRn) with respect to the structure Jδ,σ. Then
z is holomorphic if and only if Vk(z) = 0. One can compute Vk(z) as follows

Vk(z) = (1 +
√
−1σ)

∂z

∂xk
+
√
−1α

∂z

∂yk
,

which can be written in the better form

(1 +
√
−1σ)(

∂z

∂xk
+

√
−1α

1 +
√
−1σ

∂z

∂yk
) = (1 +

√
−1σ)(

∂z

∂xk
+ z

∂z

∂yk
).

So, z is holomorphic if and only if ∂z
∂xk + z ∂z

∂yk
= 0. But ∂z

∂xk + z ∂z
∂yk

= 0 if and

only if Jδ,σ is integrable and the proof is complete.
Now, we give the proof of Proposition 1.2. The techniques of the proof are

from 1“Solutions of equations characterizing a complex structure”.

Proof of Proposition 1.2

Let (Hn, g) be the hyperbolic space, e1, . . . , en be an orthonormal frame
field on Hn and ω1, . . . , ωn be its dual 1-forms. It is easy to deduce that the
structure equations with respect to this frame can be written as follows:

dωi = −ωij ∧ ωj ,
dωij = −ωik ∧ ωkj − ωi ∧ ωj .

If we define functions vi : THn → R by vi(u) = g(ei, u) for i = 1, . . . , n and
ηi = dvi + vjωij , then the 2n 1-forms ηi, ωi is a basis of 1-forms on THn such
that ωi are zero on vertical vector fields and ηi are zero on horizontal vector
fields for i = 1, . . . , n. It is easy to see that ζk = ηk − zωk for k = 1, . . . , n is a
basis for (1, 0)-forms. One can compute dζk in the following useful form

dζk = dηk − dz ∧ ωk − zωk

= ζj ∧ (ωkj −
vj
z
ωk) +

(
vjωj − dz +

vj
z

(dvj + viωji)− zωj
)
∧ ωk.

Since vivjωij = 0 then we get

dζk = ζj ∧ (ωkj −
vj
z
ωk) +

1

2z
d(−z2 + v2

1 + · · ·+ v2
n) ∧ ωk.

1http://mathoverflow.net/questions/230574/solutions-of-equations-characterizing-a-

complex-structure
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On the other hand ωk = (ζk − ζk)/(z − z), and so

dζk ≡
d(−z2+v1

2+ · · ·+vn2)

2z(z̄ − z)
∧ ζk modulo ζ1, . . . , ζn .

This yields Jδ,σ is integrable if and only if

d(−z2+v1
2+ · · ·+vn2) ≡ 0 modulo ζ1, . . . , ζn,

which means that Jδ,σ is integrable if and only if d(−z2+v1
2+ · · ·+vn2) is a

(1, 0)-form.

2.2. Induced Riemannian metrics

Suppose Θ is the Liouvill 1-form defined by Θv(A) = gπ(v)(π∗(A), v) for all
A ∈ TvTM and v ∈ TM . Then the (0, 2)-tensor

gδ,σ(A,B) = dΘ(Jδ,σA,B), A,B ∈ TTM,

is a symmetric tensor and defines a Riemannian metric on TM if α > 0. For
vector fields X,Y on M , this metric can be expressed by

gδ,σ(Xh, Y h) = αg(X,Y ),

gδ,σ(Xh, Y v) = −σg(X,Y ),

gδ,σ(Xv, Y v) = δg(X,Y ).

Remark 2.1. When we work with Θ, it is convenient to work with a locally
orthonormal frame field on (M, g) like X1, . . . , Xn. Because, if we suppose that
π : TM →M , K : TTM → TM are the natural projection and the connection
map, respectively and if we suppose θi is the dual 1-forms of Xi, then

dΘ =

n∑
i=1

(θi ◦K) ∧ (π∗θi),

where {θi ◦K,π∗θi} is the dual basis of {Xv
i , X

h
i }.

Here after, we will put σ = 0 and represent gδ,0 by ḡ (note that in this case
we have α = 1

δ ). In [4], the authors calculated the Levi-Civita connection of
gδ,σ. By putting σ = 0 we get the Levi-Civita connection of ḡ.

Theorem 2.2. Let (M, g) be a Riemannian manifold and (TM, ḡ) be its tan-
gent bundle equipped with the Riemannian metric ḡ induced by the isotropic
almost complex structure Jδ,0. Then the Levi-Civita connection of ḡ at a point
(p, u) ∈ TM is given by,

∇̄XhY h = (∇XY )h +
1

2α
Xh(α)Y h +

1

2α
Y h(α)Xh − 1

2
(R(X,Y )u)v(3)

− 1

2
g(X,Y )∇̄α,

∇̄XhY v =
1

2α2
(R(u, Y )X)h +

1

2α
Y v(α)Xh + (∇XY )v(4)
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− 1

2α
Xh(α)Y v,

∇̄XvY h =
1

2α2
(R(u,X)Y )h +

1

2α
Xv(α)Y h − 1

2α
Y h(α)Xv,(5)

∇̄XvY v = − 1

2α
Xv(α)Y v − 1

2α
Y v(α)Xv +

1

2α2
g(X,Y )∇̄α,(6)

where X and Y are vector fields on M , ∇̄α is the gradient vector field of α
with respect to ḡ and R is the Riemannian curvature of g.

3. Proof of Theorems 1.3 and 1.4

To prove these theorems, first we will prove four lemmas.

Lemma 3.1. Suppose (M, g) is a Riemannian manifold and let (TM, ḡ) be of
constant sectional curvature K̄. Then (M, g) is flat.

Proof. If (TM, ḡ) is of constant sectional curvature K̄, then we have

R̄(Xv, Y v)Zh = K̄{ḡ(Y v, Zh)Xv − ḡ(Xv, Zh)Y v}.

Since the vertical and horizontal sub-bundles are perpendicular to each other,
one can write

R̄(Xv, Y v)Zh = 0.

By setting u = 0 in (14) we get

0 =
1

α2
(R(X,Y )Z)h.

Since, π∗ : HTM −→ TM is an isomorphism, one can get the flatness of
(M, g). �

In the following statements, by supposing that (M, g) is the Euclidean space
and (TRn, ḡ) is an Einstein manifold, we shall investigate what happen for α.

Lemma 3.2. Suppose A is an open subset of TRn. If (π(A), g) is the Euclidean
space and (A, ḡ) is an Einstein manifold, then there exists an open subset B ⊂ A
such that at least one of the vector fields v∇̄α or h∇̄α vanishes on this open
set.

Proof. Let X and Y be two arbitrary vector fields on π(A). By using the
equation (16) one can write

ḡ(Q̄(Xv), Y h) =
1

2α
ḡ(∇̄Xvh∇̄α, Y h)− 1

2α
ḡ(∇̄Xv∇̄α, Y h)

+
3− 2n

4α2
Xv(α)Y h(α).

Since, the vertical and horizontal vectors are perpendicular, we have

ḡ(h∇̄α, Y h) = ḡ(∇̄α, Y h) = Y h(α).
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By using the compatibility of ḡ with ∇̄ we get

ḡ(Q̄(Xv), Y h) =
1

2α
Xv(Y h(α))− 1

2α
ḡ(h∇̄α, ∇̄XvY h)− 1

2α
Xv(Y h(α))

+
1

2α
ḡ(∇̄α, ∇̄XvY h) +

3− 2n

4α2
Xv(α)Y h(α).

But, the formula (5) says that ḡ(∇̄α, ∇̄XvY h) = ḡ(h∇̄α, ∇̄XvY h). So,

ḡ(Q̄(Xv), Y h) =
3− 2n

4α2
Xv(α)Y h(α).(7)

Setting Q̄(Xv) = ρXv in (7) gives us Xv(α)Y h(α) = 0. Now, suppose that
((x1, . . . , xn, y1, . . . , yn),A) be the standard coordinate system on A. If the
zero sets of the functions ∂α

∂yi for i = 1, . . . , n are dense in A, then v∇̄α = 0 on

A. If there exists i0 ∈ {1, . . . , n} such that the zero set of ∂α
∂yi0

is not dense,

then there exists an open set B ⊂ A such that for all (p, u) ∈ B we have
∂α
∂yi0

(p, u) 6= 0. On the other hand

∂α

∂yi0
∂α

∂xj
= 0 ∀j = 1, . . . , n,

on B, that is, ∂α
∂xj = 0,∀j = 1, . . . , n. This implies that h∇̄α = 0 on B.

Note that when we talk about the Euclidean space with coordinate system
(x1, . . . , xn), the horizontal space will be spanned by vector fields ∂

∂xi for i =
1, . . . , n. �

Remark 3.3. If (M, g) is an Einstein Riemannian manifold of dimension greater
than 3, then from the contracted second Bianchi identity we can conclude that
the (1, 1)-Ricci tensor is a constant multiple of identity.

Now, suppose B is an open subset of TRn. If (B, ḡ) is an Einstein manifold
and h∇̄α = 0 on B, it will be shown that α is a constant function on B.

Lemma 3.4. Let B be an open subset of TRn and ḡ be a Riemannian metric
defined by α such that h∇̄α = 0 on B with n ≥ 2. If (B, ḡ) is an Einstein
manifold, then α must be a constant function on B.

Proof. Let (x1, . . . , xn) be the standard coordinate system on π(B) ⊂ Rn and
suppose that (x1, . . . , xn, y1, . . . , yn) is the standard coordinate system on B.
Moreover, suppose Q̄ is the Ricci operator on B given by the equations (15)
and (16). If Q̄(Xh) = ρXh, then by setting X = ∂

∂xj in the equation (15) one
can get

ρ
∂

∂xj
=

{
1

4α2
||v∇̄α||2 − 1

2α
∆ḡα

}
∂

∂xj

− 1

2α
v∇̄ ∂

∂xj

(
α

n∑
i=1

∂α

∂yi
∂

∂yi

)
+

1

2α
∇̄ ∂

∂xj

(
α

n∑
i=1

∂α

∂yi
∂

∂yi

)
.
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Using the equation (4) and the fact that h∇̄α = 0 give us

ρ
∂

∂xj
=

{
1

4α2
||v∇̄α||2 − 1

2α
∆ḡα

}
∂

∂xj
+

1

4α

n∑
i=1

(
∂α

∂yi

)2
∂

∂xj
,

which is equivalent to

ρ =
1

2α

n∑
i=1

(
∂α

∂yi

)2

− 1

2α
∆ḡα.(8)

On the other hand, working on the equation (16) leads to the following equation

ρ
∂

∂yj
=

{
− 1

α

n∑
i=1

(
∂α

∂yi

)2

+
1

2α
∆ḡα

}
∂

∂yj

+

n∑
i=1

(
1− n

2α

∂α

∂yi
∂α

∂yj
− ∂2α

∂yi∂yj

)
∂

∂yi
+

1

2α

n∑
i=1

(
∂α

∂yi

)2
∂

∂yj
,

which gives us

ρ = − 1

2α

n∑
i=1

(
∂α

∂yi

)2

+
1

2α
∆ḡα+

1−n
2α

(
∂α

∂yj

)2

− ∂2α

∂yj∂yj
, j = 1, . . . , n,(9)

and

0 =
1− n

2α

∂α

∂yj
∂α

∂yi
− ∂2α

∂yi∂yj
, i, j = 1, . . . , n and i 6= j.(10)

Note that ∇̄α = α
∑n
i=1

∂α
∂yi

∂
∂yi and ∆ḡα can be calculated from (13) as ∆ḡα =∑

i=1(α ∂2α
∂(yi)2 + ( ∂α∂yi )2). The equations (8), (9) and (10) are equivalent to the

following system of PDE’s
n∑
i=1

∂2α

∂(yi)2
= −2ρ,

1− n
2α

(
∂α

∂yj

)2

− ∂2α

∂(yj)2
= 2ρ, j = 1, . . . , n,

1− n
2α

∂α

∂yj
∂α

∂yi
− ∂2α

∂yj∂yi
= 0, i, j = 1, . . . , n and i 6= j.

The third equation can be written as ∂2

∂yi∂yj (α(n+1)/2) = 0. So, it follows

that

α(n+1)/2 =
∑
i

fi(y
i)

for some mappings fi, i = 1, . . . , n (note that h∇̄α = 0). Now, the second
condition says that

∂2

∂(yi)2
(α(n+1)/2) = −(n+ 1)ρα(n−1)/2.
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Since the left hand side depends only on yi, this is possible when α is a function
of only yi. If we consider all indexes i, α must be constant. Note that according
to Remark 3.3, ρ is a constant function. �

It is natural to think of what happen for α when v∇̄α vanishes on an open
set B ⊂ TRn whenever B equipped with an Einstein metric ḡ. Next lemma
shows that α must be a constant function in this case, too.

Lemma 3.5. Let B be an open subset of TRn and ḡ be a Riemannian metric
defined by α such that v∇̄α = 0 on B. If (B, ḡ) is an Einstein manifold, then
α must be a constant function.

Proof. First, note that ∇̄α = 1
α

∑n
i=1

∂α
∂xi

∂
∂xi and ∆ḡα =

∑n
i=1( 1

α
∂2α
∂(xi)2 −

1
α2 ( ∂α∂xi )2). Like the proof of the last lemma, using the equations (15) and (16)
and after some routine calculations we get the following system of PDE’s

ρ =
1

2α2

n∑
j=1

∂2α

∂(xj)2
− 1

α3

n∑
j=1

(
∂α

∂xj

)2

,

2ρ =
1

α2

∂2α

∂(xi)2
− n+ 3

2α3

(
∂α

∂xi

)2

, i = 1, . . . , n,

∂2α

∂xi∂xj
=
n+ 3

2α

∂α

∂xi
∂α

∂xj
, i 6= j, i, j = 1, . . . , n.

The third equation is equivalent to the following

∂2

∂xi∂xj
α−(n+1/2) = 0,

which says that

α−(n+1/2) =

n∑
i=1

gi(x
i),(11)

for some functions gi, i = 1, . . . , n (note that v∇̄α = 0). Also, the second
equation gives us

−(n+ 1)ρα
1−n
2 =

∂2

∂(xi)2
α−(n+1/2).(12)

The equations (11) and (12) show that α must be a constant function. �

Proof of Theorem 1.3

Suppose α is not constant. So, there exists v ∈ TRn such that ∇̄α 6= 0 at v.
This implies that there exists an open set A of TRn such that ∇̄α 6= 0 on A.
But, the last three lemmas showed that ∇̄α vanishes on an open subset of A
and this is a contradiction. So, α is a constant mapping.

Now, let ∇̄α = 0 on TRn. Since the Euclidean space is a flat space then
using the equations (15) and (16) calculated for Q̄(Xh) and Q̄(Xv) shows that
Q̄ must be vanished and this implies that (TRn, ḡ) is an Einstein manifold.
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So, we get that (TRn, ḡ) is an Einstein manifold if and only if α is a constant
function.

Proof of Theorem 1.4

We know that every space form is an Einstein manifold. So, (TM, ḡ) is an
Einstein manifold. Moreover, due to the lemma 3.1 the base manifold is locally
flat. Now, without loss of generality, one can assume that M is the Euclidean
space. So, from the theorem 1.3 one can get that α is a constant function. This
proves the theorem.

Corollary 3.6. If (TM, ḡ) is of constant sectional curvature, then Jδ,0 is in-
tegrable.

Proof. We know that if the base manifold is flat with locally conformal flat
coordinate system (x1, . . . , xn), then Jδ,σ is integrable if and only if

∂z

∂xl
+ z

∂z

∂yl
= 0,

for all l = 1, . . . , n where (x1, . . . , xn, y1, . . . , yn) is the related coordinate sys-
tem on TM . So, according to the theorem 1.4, z satisfies the above equation
and therefore, Jδ,0 is integrable. �

Appendix

Here, one can find the needed formulas of curvatures and Laplacian. Their
calculations can be found in [5].

Definition. Let (M, g) be a Riemannian manifold and ∇ be the Levi-Civita
connection of g. Moreover, let C∞M be the set of all smooth functions on M .
The differential operator ∆g : C∞M −→ C∞M given by

∆g(f) =

n∑
i=1

{∇Ei
∇Ei

(f)−∇∇Ei
Ei

(f)},

is called rough Laplacian on functions, where {E1, . . . , En} is a locally orthonor-
mal frame on M and f ∈ C∞M .

Let {E1, . . . , En} be a locally orthonormal frame on (M, g) around p ∈ M
such that ∇Ei

Ej = 0 at p. Then, it is obvious that{
Eh1√
α
, . . . ,

Eh1√
α
,
√
αEv1 , . . . ,

√
αEvn

}
is a locally orthonormal frame on (TM, ḡ). The Laplacian of α at p is calculated
as follow,

∆ḡα(p) =

n∑
i=1

{
1

α
Ehi (Ehi (α)) + αEvi (Evi (α))
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− 1

α2
Ehi (α)Ehi (α) + Evi (α)Evi (α)

}
(p).(13)

Denote by ∇ and R the Levi-Civita connection and the Riemannian curva-
ture tensor of (M, g), respectively. Moreover, let {E1, . . . , En} be an orthonor-
mal locally frame on M . Then one can get the following formulas for curvature
tensor R̄ of ḡ in special case and Ricci tensor Q̄ as follows.

R̄(Xv, Y v)Zh =
1

α2
(R(X,Y )Z)h − 1

α3
Xv(α)(R(u, Y )Z)h

+
1

α3
Y v(α)(R(u,X)Z)h +

1

4α4
(R(u,X)R(u, Y )Z)h

− 1

4α4
(R(u, Y )R(u,X)Z)h + {− 1

4α3
(R(u, Y )Z)h(α)

+
1

2α
Y v(Zh(α))− 3

4α2
Y v(α)Zh(α)}Xv

+ { 1

4α3
(R(u,X)Z)h(α)− 1

2α
Xv(Zh(α))

+
3

4α2
Xv(α)Zh(α)}Y v,

(14)

and

Q̄(Xh) =
1

α
Qh(X) + { 1

4α2
||v∇̄α||2 − 1

2α
∆ḡα}Xh

+
1

2α
{h∇̄Xhh∇̄α− v∇̄Xhv∇̄α}

+
1

2α
∇̄Xh∇̄α− 2n+ 1

4α2
Xh(α)∇̄α− 1

4α2
Xh(α)h∇̄α

+
1

α2
Xh(α)v∇̄α

+ Σni=1{
3

4α3
(R(u,R(X,Ei)u)Ei)

h +
1

4α2
(R(X,Ei)u)v(α)Ehi

− 1

4α3
(R(u,Ei)R(u,Ei)X)h +

1

2α
((∇Ei

R)(X,Ei)u)v

− 3

2α2
Ehi (α)(R(X,Ei)u)v +

1

4α2
(R(u,Ei)X)h(α)Evi },

(15)

and

Q̄(Xv) = {− 1

4α2
||v∇̄α||2 − 3

4α2
||∇̄α||2 +

1

2α
∆ḡα}Xv

+
1

2α
{h∇̄Xvh∇̄α− v∇̄Xvv∇̄α}

− 1

2α
∇̄Xv∇̄α+

3− 2n

4α2
Xv(α)∇̄α+

3

4α2
Xv(α)v∇̄α(16)

+ Σni=1{−
1

2α3
((∇Ei

R)(u,X)Ei)
h +

3

2α4
Ehi (α)(R(u,X)Ei)

h
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− 1

4α4
(R(u,X)Ei)

h(α)Ehi +
1

4α3
(R(Ei, R(u,X)Ei)u)v}.
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