Commun. Korean Math. Soc. 35 (2020), No. 4, pp. 1185-1192

 $\begin{array}{l} {\rm https://doi.org/10.4134/CKMS.c200118} \\ {\rm pISSN:~1225\text{-}1763~/~eISSN:~2234\text{-}3024} \end{array}$

ON MULTI SUBSPACE-HYPERCYCLIC OPERATORS

Mansooreh Moosapoor

ABSTRACT. In this paper, we introduce and investigate multi subspace-hypercyclic operators and prove that multi-hypercyclic operators are multi subspace-hypercyclic. We show that if T is M-hypercyclic or multi M-hypercyclic, then T^n is multi M-hypercyclic for any natural number n and by using this result, make some examples of multi subspace-hypercyclic operators. We prove that multi M-hypercyclic operators have somewhere dense orbits in M. We show that analytic Toeplitz operators can not be multi subspace-hypercyclic. Also, we state a sufficient condition for coanalytic Toeplitz operators to be multi subspace-hypercyclic.

1. Introduction and preliminaries

Let H be an infinite-dimensional and separable Hilbert space. We denote the set of all linear continuous operators on H by B(H). We say an operator $T \in B(H)$ is hypercyclic, if there is $x \in H$ such that orb(T, x) is dense in H, where

$$orb(T, x) = \{x, Tx, T^2x, \ldots\}.$$

The concept of hypercyclicity is a notable matter in dynamical systems and studied by mathematicians for many years. One can read [4] and [5] to see some interesting material on this topic.

We say that T is multi-hypercyclic, if there is $\{x_1, x_2, \ldots, x_n\} \subseteq H$ such that $\bigcup_{i=1}^n orb(T, x_i)$ is dense in H.

Herrero in [6] conjectured that on a Hilbert space, multi-hypercyclic operators are hypercyclic. Peris in [14] proved that this conjecture is true even for multi-hypercyclic operators that are defined on an arbitrary locally convex space. Also, Miller proved in [12, Theorem 3] that if T is multi-hypercyclic, then T^n is multi-hypercyclic for any natural number n.

Subspace-hypercyclic operators were defined by Madore and Martinez-Avendano in [9]. We say an operator $T \in B(H)$ is subspace-hypercyclic with respect to a closed subspace M of H if there is $x \in H$ such that $orb(T, x) \cap M$ is dense in M. They proved in [9] that subspace-hypercyclic operators do not exist

Received April 3, 2020; Accepted August 18, 2020.

²⁰¹⁰ Mathematics Subject Classification. Primary 47A16, 47B37, 37B99.

Key words and phrases. Subspace-hypercyclic operators, multi-hypercyclic operators, multi-subspace-hypercyclic operators. Toeplitz operators.

on finite-dimensional spaces. Bamerni, Kadets and Kilicman proved in [1] the following interesting theorem.

Theorem 1.1 ([1]). Let A be a dense subset of a Hilbert space H. Then there exists a non-trivial closed subspace M of H such that $A \cap M$ is dense in M.

By Theorem 1.1, they stated in [1] that any hypercyclic operator is subspace-hypercyclic. Also, one can discover in [2], [8], and [13], more knowledge about subspace-hypercyclic operators and related topics. Now it is natural to define multi subspace-hypercyclic operators as follows.

Definition. Let $T \in B(H)$ and let M be a closed and non-zero subspace of H. We say that T is multi subspace-hypercyclic with respect to M or multi M-hypercyclic if there exists $\{x_1, x_2, \ldots, x_n\} \subseteq H$ such that

$$\overline{\bigcup_{i=1}^{n} (orb(T, x_i) \cap M)} = M.$$

We say $F = \{x_1, x_2, \dots, x_n\} \subseteq H$ is a minimal set for multi M-hypercyclicity for $T \in B(H)$ if for any $E \subset F$ we have

$$\overline{\bigcup_{x_i \in E} (orb(T, x_i) \cap M)} \neq M.$$

It is clear by the definition that subspace-hypercyclic operators are multi subspace-hypercyclic.

In this paper, we investigate multi subspace-hypercyclic operators. In Section 2, we prove that multi-hypercyclic operators are multi subspace-hypercyclic. We show that if T is M-hypercyclic or multi M-hypercyclic, then T^n is multi M-hypercyclic for any natural number n and by this, make examples of multi subspace-hypercyclic operators. We prove that multi M-hypercyclic operators have somewhere dense orbits in M. Also, we show that if T is a multi M-hypercyclic operator, then $\ker(T^* - \lambda) \subseteq M^{\perp}$.

In Section 3, we show that analytic Toeplitz operators can not be multi subspace-hypercyclic. We state a sufficient condition for coanalytic Toeplitz operators to be multi subspace-hypercyclic.

2. Some results and examples

In this section, we present some properties of multi subspace-hypercyclic operators. First, we show that multi-hypercyclic operators are multi subspace-hypercyclic.

Theorem 2.1. Let $T \in B(H)$ be a multi-hypercyclic operator. Then T is multi subspace-hypercyclic with respect to a closed and non-trivial subspace M of H.

Proof. Let x_1, x_2, \ldots, x_n be elements in H such that $\bigcup_{1 \leq i \leq n} orb(T, x_i)$ is dense in H. By Theorem 1.1, there exists a closed and non-trivial subspace M of H

such that $(\bigcup_{1 \leq i \leq n} orb(T, x_i)) \cap M$ is dense in M. But

$$\frac{\bigcup_{1\leq i\leq n} orb(T,x_i)) \cap M}{\bigcup_{1\leq i\leq n} (orb(T,x_i)\cap M)} = \frac{\bigcup_{1\leq i\leq n} orb(T,x_i)) \cap M}{\bigcup_{1\leq i\leq n} orb(T,x_i)} \cap M.$$

Hence T is multi subspace-hypercyclic with respect to M.

In the next theorem, we show that multi subspace-hypercyclicity of T implies multi subspace-hypercyclicity of T^n .

Theorem 2.2. Let $T \in B(H)$. If T is multi subspace-hypercyclic with respect to M, then T^n is multi subspace-hypercyclic with respect to M for any $n \in \mathbb{N}$.

Proof. When n=1 the proof is obvious. Consider that $n\geq 2$. By hypothesis, T is multi M-hypercyclic. So there is x_1,x_2,\ldots,x_m in H such that $\bigcup_{1\leq i\leq m}(orb(T,x_i)\cap M)$ is dense in M. Let $y_{i,j}=T^jx_i$, where $1\leq i\leq m$ and $1\leq j\leq n-1$. Consider that

$$(1) \qquad \bigcup_{1 \leq i \leq m} (orb(T, x_i) \cap M) = \bigcup_{\substack{1 \leq i \leq m \\ 0 \leq j \leq n-1}} (orb(T^n, y_{i,j}) \cap M).$$

The left side of (1) is dense in M. So the other side of (1) must be dense in M too. So T^n is multi subspace-hypercyclic with respect to M.

Now by Theorem 2.1 and Theorem 2.2, we can conclude that if T is multihypercyclic, then T^n is multi-subspace-hypercyclic for any natural number n.

Theorem 2.3. Let $T \in B(H)$. Suppose that there exists $n \in \mathbb{N}$ such that T^n is multi subspace-hypercyclic with respect to M. Then T is multi subspace-hypercyclic with respect to M.

Proof. Let n be a positive integer greater than or equal to 2 such that T^n is multi subspace-hypercyclic with respect to M. So there exist x_1, x_2, \ldots, x_m in H such that

(2)
$$\overline{\bigcup_{1 \le i \le m} (orb(T^n, x_i) \cap M)} = M.$$

But

(3)
$$orb(T^n, x_i) \cap M \subseteq orb(T, x_i) \cap M.$$

Now by (2) and (3), we conclude that $\bigcup_{1 \leq i \leq m} (orb(T, x_i) \cap M)$ is dense in M. Therefore T is multi M-hypercyclic. \square

It is said in Section 1 that subspace-hypercyclic operators are multi subspace-hypercyclic. In the next theorem, we show that if T is subspace-hypercyclic, then T^n is multi subspace-hypercyclic for any natural number n.

Theorem 2.4. Let $T \in B(H)$ be an M-hypercyclic operator. Then T^n is multi M-hypercyclic for any $n \in \mathbb{N}$.

Proof. It is clear when n=1. Now let $n \geq 2$. Let x be an M-hypercyclic vector for T. Hence $\overline{orb(T,x)} \cap M = M$. But if we consider $x_1 := x, x_2 := Tx, \ldots, x_n := T^{n-1}x$, then

$$\begin{split} & \bigcup_{j=1}^n (orb(T^n, T^{j-1}x) \cap M) \\ &= (orb(T^n, x) \cup orb(T^n, Tx) \cup \dots \cup orb(T^n, T^{n-1}x)) \cap M \\ &= \{x, Tx, \dots, T^{n-1}x, T^nx, T^{n+1}x, \dots\} \cap M \\ &= orb(T, x) \cap M. \end{split}$$

Therefore T^n is multi M-hypercyclic.

By using Theorem 2.4, we can make some examples as follows.

Example 2.5. Let T be a hypercyclic operator on a Hilbert space H. If we consider $T \oplus I : H \oplus H \to H \oplus H$, then $T \oplus I$ is subspace-hypercyclic with respect to $M := H \oplus \{0\}$. Now by Theorem 2.4, we can deduce that $(T \oplus I)^n = T^n \oplus I$ is multi M-hypercyclic for any $n \in \mathbb{N}$.

Example 2.6. Let $\lambda \in \mathbb{C}$ with $|\lambda| > 1$. Suppose that B is the backward shift on l^2 . It is proved in [11, Corollary 2] that $T = \lambda B$ is subspace-hypercyclic with respect to any finite-codimensional subspace. So we can conclude from Theorem 2.4 that $T^n = \lambda^n B^n$ is multi M-hypercyclic for any finite-codimensional subspace M of l^2 .

Corollary 2.7. Let $T \in B(H)$ be an operator with this property that $T^n = I$ for some $n \in \mathbb{N}$. Then T can not be subspace-hypercyclic. Especially, if $T = T^{-1}$ then T can not be subspace-hypercyclic.

Proof. Consider that $T^n = I$ for some $n \in \mathbb{N}$. Without loss of generality, we can assume that $n \geq 2$. Suppose on contrary that T is subspace-hypercyclic. By Theorem 2.4, T^n must be multi subspace-hypercyclic. But this is impossible since the identity operator can not be multi subspace-hypercyclic.

We show in the following that multi subspace-hypercyclic operators have somewhere dense orbits. For this, first, note to the following lemma.

Lemma 2.8 ([14]). Let X be a topological space and let F_1, F_2, \ldots, F_n be a finite family of closed subsets of X such that $X = \bigcup_{j=1}^n F_i$. If $(F_1)^{\circ} = \phi$, then $X = \bigcup_{j=2}^n F_i$.

Theorem 2.9. Let $T \in B(H)$ be a multi M-hypercyclic operator. Then there exists $x \in H$ such that $orb(T, x) \cap M$ is somewhere dense in M.

Proof. Let T be a multi M-hypercyclic operator with a minimal set $\{x_1, x_2, ..., x_n\}$ for multi M-hypercyclicity. So

$$\overline{\bigcup_{1 \leq i \leq n} (orb(T, x_i) \cap M)} = \bigcup_{1 \leq i \leq n} \overline{(orb(T, x_i) \cap M)} = M.$$

Suppose that there is a x_{i_0} , where $1 \leq i_0 \leq n$, such that $orb(T, x_{i_0}) \cap M$ is nowhere dense. That means $(orb(T, x_{i_0}) \cap M)^{\circ} = \phi$. Then by Lemma 2.8, $\bigcup_{\substack{1 \leq i \leq n \ i \neq i_0}} \overline{(orb(T, x_i) \cap M)} = M$. But this contradicts to minimality of

 $\{x_1, x_2, \ldots, x_n\}$. So $(\overline{orb(T, x_{i_0}) \cap M})^{\circ} \neq \phi$. Therefore $orb(T, x_{i_0}) \cap M$ is somewhere dense in M. Similarly, for any other x_i with $1 \leq i \leq n$, we can conclude that $orb(T, x_i) \cap M$ is somewhere dense in M.

In the proof of Theorem 2.9, we can assume without loss of generality that $x_i \in M$ for any $1 \leq i \leq n$. So we can say that if $T \in B(H)$ is a multi M-hypercyclic operator, then there exists $x \in M$ such that $orb(T, x) \cap M$ is somewhere dense in M.

Bourdon and Feldman in [3] showed that for a locally convex space X and for $T \in B(X)$, somewhere density of orb(T,x) in X implies density of orb(T,x) in X. But this result is not true for subspace somewhere dense orbits. In [7] authors constructed an operator T on a Banach space X such that $Orb(T,x) \cap M$ is somewhere dense in M, but it is not everywhere dense in M.

By above note and this fact that multi-hypercyclic operators are hypercyclic, the following question arises:

Question. Let T be multi M-hypercyclic. Can we conclude that T is M-hypercyclic?

Theorem 2.10. Let $T \in B(H)$ be a multi M-hypercyclic operator. Then $ker(T^{*^n} - \lambda) \subset M^{\perp}$ for any $n \in \mathbb{N}$.

Proof. Let T be a multi M-hypercyclic operator, where M is a closed and non-trivial subspace of H. First, we prove the case n=1. Suppose that $\varphi \in ker(T^*-\lambda)$. We show that $\varphi=0$ on M. Let $\{x_1,x_2,\ldots,x_n\}$ be a minimal set for multi M-hypercyclicity of T. So $\overline{\bigcup_{1\leq i\leq n}(orb(T,x_i)\cap M)}=M$. By Theorem 2.9, $orb(T,x_1)\cap M$ is somewhere dense in M. Without loss of generality, we can assume that $x_1\in orb(T,x_1)\cap M$ and $0\in orb(T,x_1)\cap M$. So there exist increasing sequences $\{n_k\}$ and $\{m_k\}$ of natural numbers such that $T^{n_k}x_1\to x_1$ and $T^{m_k}x_1\to 0$, where $T^{n_k}x_1,T^{m_k}x_1\in M$ for any k. Hence

$$\varphi(T^{n_k}x_1) \to \varphi(x_1)$$
 and $\varphi(T^{m_k}x_1) \to 0$.

But $\varphi \in ker(T^* - \lambda)$. So $\varphi(Tx_1) = \lambda(\varphi x_1)$. Therefore

$$\lambda^{n_k}\varphi(x_1) \to \varphi(x_1)$$
 and $\lambda^{m_k}\varphi(x_1) \to 0$.

Hence $\varphi(x_1) = 0$ and therefore

$$orb(T, x_1) \cap M \subseteq ker(\varphi) \cap M$$
.

But $\overline{orb}(T, x_1) \cap \overline{M}$ contains an open set in M. Hence $\overline{ker}(\varphi) \cap \overline{M} = ker(\varphi)$ $\cap M$ contains an open set in M. But this indicates that $\varphi|_M = 0$. Hence $\varphi \in M^{\perp}$.

Now by Theorem 2.3 and note to this fact that $(T^*)^n = (T^n)^*$, we can infer that $ker(T^{*n} - \lambda) \subseteq M^{\perp}$ for $n \ge 2$.

3. Multi subspace-hypercyclicity of Toeplitz operators

In this section, we peruse the multi subspace-hypercyclicity of Toeplitz operators. Let us recall some preliminaries.

Definition ([10, Definition 1.1.1]). The Hardy-Hilbert space consists of analytic functions such that having power series representation with square-summable complex coefficients and it is denoted by \mathbf{H}^2 . That means

$$\mathbf{H}^2 = \{ f : f(z) = \sum_{n=0}^{\infty} a_n z^n \text{ and } \sum_{n=0}^{\infty} |a_n|^2 < \infty \}.$$

It is not hard to see that \mathbf{H}^2 is a Hilbert space and any function in \mathbf{H}^2 is analytic on the unit disk ([10]).

The symbol $\mathbb D$ is used to indicate the open unit disk in $\mathbb C$. That is $\mathbb D=\{z\in\mathbb C:|z|<1\}$. Also, The symbol S^1 is used to indicate the unit circle in $\mathbb C$. That is $S^1=\{z\in\mathbb C:|z|=1\}$.

Let $L^2 = L^2(S^1)$ be the Hilbert space of square-integrable functions on S^1 with respect to Lebesque measure, normalized so that the measure of the entire circle is 1. The Hardy-Hilbert space is a subspace of L^2 [10, p. 5].

The space H^{∞} consists of all functions that are bounded and analytic on the \mathbb{D} . When $f \in H^{\infty}$, we define $||f||_{\infty} = \sup\{|f(z)| : z \in \mathbb{D}\}$. It is proved that $H^2 \cap L^{\infty} = H^{\infty}$, where $L^{\infty} = L^{\infty}(S^1)$ is the set of essentially bounded functions on S^1 (one can see [11] and [10, Definition 1.1.23]).

Definition ([10]). Let $\phi \in L^{\infty}$. We denote the Toeplitz operator with symbol ϕ by T_{ϕ} and for any $f \in \mathbf{H}^2$ we define it by $T_{\phi}f = P\phi f$, where P is the orthogonal projection of L^2 onto \mathbf{H}^2 .

If $\phi \in H^{\infty}$, we say that T_{ϕ} is an analytic Toeplitz operator. We say T_{ϕ} is a coanalytic Toeplitz operator if T_{ϕ}^{*} is analytic.

Note that if $\phi \in H^{\infty}$, then for any $f \in \mathbf{H}^2$ we have $T_{\phi}f = P\phi f = \phi f$. Also, for $\phi \in H^{\infty}$ since $T_{\phi}^* = T_{\overline{\phi}}$, we can conclude that T_{ϕ} is coanalytic if and only if $\overline{\phi} \in H^{\infty}$.

It is established in [9] that an analytic Toeplitz operator can not be subspace-hypercyclic. In the next theorem, we extend their conclusion and we show that an analytic Toeplitz operator can not be multi subspace-hypercyclic. First, recall that for any $\lambda \in \mathbb{D}$, reproducing kernel $k_{\lambda} : \mathbb{D} \to \mathbb{C}$ defined by:

$$k_{\lambda}(z) = \sum_{n=0}^{\infty} \overline{\lambda}^n z^n = \frac{1}{1 - \overline{\lambda}z}.$$

It is proved that $k_{\lambda} \in \mathbf{H}^2$ and if $\Delta \subseteq \mathbb{D}$ be a set with an accumulation point in \mathbb{D} , then $span\{k_{\lambda} : \lambda \in \Delta\}$ is dense in \mathbf{H}^2 (one can see [5, Proposition 4.38 and Lemma 4.39]).

Theorem 3.1. An analytic Toeplitz operator can not be multi subspace-hypercyclic with respect to a closed and non-trivial subspace M of \mathbf{H}^2 .

Proof. Let T_{ϕ} be an analytic Toeplitz operator. Suppose on contrary that T_{ϕ} is multi subspace-hypercyclic with respect to a closed and non-trivial subspace M of \mathbf{H}^2 . Let $\lambda \in \mathbb{D}$ and let k_{λ} be the reproducing kernel of λ . So $k_{\lambda} \in \ker(T_{\phi}^* - \overline{\phi(\lambda)})$. But $\ker(T_{\phi}^* - \overline{\phi(\lambda)}) \subseteq M^{\perp}$. Therefore $k_{\lambda} \in M^{\perp}$. So

$$\overline{span\{k_{\lambda}:\lambda\in\mathbb{D}\}}\subseteq M^{\perp}.$$

That means $\mathbf{H}^2 \subseteq M^{\perp}$ and this is a contradiction. So T_{ϕ} can not be multi M-hypercyclic.

Godefroy and Shapiro in [4] state a sufficient condition for hypercyclicity of coanalytic Toeplitz operators as follows.

Theorem 3.2 ([4]). Let $\phi \in H^{\infty}$ be non-constant. If $\phi(\mathbb{D}) \cap S^1$ is non-empty, then T_{ϕ}^* is hypercyclic.

By Theorem 3.2, we can express a sufficient condition for multi subspacehypercyclicity of powers of a coanalytic Toeplitz operator.

Corollary 3.3. Let $\phi \in H^{\infty}$ be non-constant. If $\phi(\mathbb{D}) \cap S^1$ is non-empty, then T_{ϕ}^{*n} is multi subspace-hypercyclic for any $n \in \mathbb{N}$.

Proof. By hypothesis, $\phi(\mathbb{D}) \cap S^1$ is non-empty. So by Theorem 3.2, T_{ϕ}^* is hypercyclic. By Theorem 1.1, we can find a non-trivial and closed subspace M of \mathbf{H}^2 such that T_{ϕ}^* is M-hypercyclic. Now we can conclude by Theorem 2.4 that T_{ϕ}^{*n} is multi M-hypercyclic for any $n \in \mathbb{N}$.

References

- N. Bamerni, V. Kadets, and A. Kılıçman, Hypercyclic operators are subspace hypercyclic,
 J. Math. Anal. Appl. 435 (2016), no. 2, 1812–1815. https://doi.org/10.1016/j.jmaa. 2015.11.015
- [2] N. Bamerni and A. Kılıçman, On subspace-diskcyclicity, Arab J. Math. Sci. 23 (2017),
 no. 2, 133-140. https://doi.org/10.1016/j.ajmsc.2016.06.001
- [3] P. S. Bourdon and N. S. Feldman, Somewhere dense orbits are everywhere dense, Indiana Univ. Math. J. 52 (2003), no. 3, 811-819. https://doi.org/10.1512/iumj.2003.52.
- [4] G. Godefroy and J. H. Shapiro, Operators with dense, invariant, cyclic vector manifolds,
 J. Funct. Anal. 98 (1991), no. 2, 229-269. https://doi.org/10.1016/0022-1236(91)
 90078-J
- [5] K.-G. Grosse-Erdmann and A. Peris Manguillot, *Linear Chaos*, Universitext, Springer, London, 2011. https://doi.org/10.1007/978-1-4471-2170-1
- [6] D. A. Herrero, Hypercyclic operators and chaos, J. Operator Theory 28 (1992), no. 1, 93-103
- [7] R. R. Jiménez-Munguía, R. A. Martínez-Avendaño, and A. Peris, Some questions about subspace-hypercyclic operators, J. Math. Anal. Appl. 408 (2013), no. 1, 209-212. https: //doi.org/10.1016/j.jmaa.2013.05.068
- [8] C. M. Le, On subspace-hypercyclic operators, Proc. Amer. Math. Soc. 139 (2011), no. 8, 2847–2852. https://doi.org/10.1090/S0002-9939-2011-10754-8
- [9] B. F. Madore and R. A. Martínez-Avendaño, Subspace hypercyclicity, J. Math. Anal. Appl. 373 (2011), no. 2, 502-511. https://doi.org/10.1016/j.jmaa.2010.07.049

- [10] R. A. Martínez-Avendaño and P. Rosenthal, An Introduction to Operators on the Hardy-Hilbert Space, Graduate Texts in Mathematics, 237, Springer, New York, 2007.
- [11] R. A. Martínez-Avendaño and O. Zatarain-Vera, Subspace hypercyclicity for Toeplitz operators, J. Math. Anal. Appl. 422 (2015), no. 1, 772-775. https://doi.org/10.1016/ j.jmaa.2014.08.038
- [12] V. G. Miller, Remarks on finitely hypercyclic and finitely supercyclic operators, Integral Equations Operator Theory 29 (1997), no. 1, 110–115. https://doi.org/10.1007/BF01191482
- [13] M. Moosapoor, Common subspace-hypercyclic vectors, Int. J. Pure Apll. Math. 118 (2018), no. 4, 865–870.
- [14] A. Peris, Multi-hypercyclic operators are hypercyclic, Math. Z. 236 (2001), no. 4, 779–786. https://doi.org/10.1007/PL00004850

MANSOOREH MOOSAPOOR DEPARTMENT OF MATHEMATICS FARHANGIAN UNIVERSITY TEHRAN, IRAN

Email address: m.mosapour@cfu.ac.ir; mosapor110@gmail.com