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ON MULTI SUBSPACE-HYPERCYCLIC OPERATORS

Mansooreh Moosapoor

Abstract. In this paper, we introduce and investigate multi subspace-

hypercyclic operators and prove that multi-hypercyclic operators are

multi subspace-hypercyclic. We show that if T is M -hypercyclic or multi
M -hypercyclic, then Tn is multi M -hypercyclic for any natural num-

ber n and by using this result, make some examples of multi subspace-
hypercyclic operators. We prove that multi M -hypercyclic operators have

somewhere dense orbits in M . We show that analytic Toeplitz operators

can not be multi subspace-hypercyclic. Also, we state a sufficient condi-
tion for coanalytic Toeplitz operators to be multi subspace-hypercyclic.

1. Introduction and preliminaries

Let H be an infinite-dimensional and separable Hilbert space. We denote
the set of all linear continuous operators on H by B(H). We say an operator
T ∈ B(H) is hypercyclic, if there is x ∈ H such that orb(T, x) is dense in H,
where

orb(T, x) = {x, Tx, T 2x, . . .}.
The concept of hypercyclicity is a notable matter in dynamical systems and
studied by mathematicians for many years. One can read [4] and [5] to see
some interesting material on this topic.

We say that T is multi-hypercyclic, if there is {x1, x2, . . . , xn} ⊆ H such
that

⋃n
i=1 orb(T, xi) is dense in H.

Herrero in [6] conjectured that on a Hilbert space, multi-hypercyclic oper-
ators are hypercyclic. Peris in [14] proved that this conjecture is true even
for multi-hypercyclic operators that are defined on an arbitrary locally convex
space. Also, Miller proved in [12, Theorem 3] that if T is multi-hypercyclic,
then Tn is multi-hypercyclic for any natural number n.

Subspace-hypercyclic operators were defined by Madore and Martinez-Aven-
dano in [9]. We say an operator T ∈ B(H) is subspace-hypercyclic with respect
to a closed subspace M of H if there is x ∈ H such that orb(T, x)∩M is dense
in M . They proved in [9] that subspace-hypercyclic operators do not exist
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on finite-dimensional spaces. Bamerni, Kadets and Kilicman proved in [1] the
following interesting theorem.

Theorem 1.1 ([1]). Let A be a dense subset of a Hilbert space H. Then there
exists a non-trivial closed subspace M of H such that A ∩M is dense in M .

By Theorem 1.1, they stated in [1] that any hypercyclic operator is subspace-
hypercyclic. Also, one can discover in [2], [8], and [13], more knowledge about
subspace-hypercyclic operators and related topics. Now it is natural to define
multi subspace-hypercyclic operators as follows.

Definition. Let T ∈ B(H) and let M be a closed and non-zero subspace of
H. We say that T is multi subspace-hypercyclic with respect to M or multi
M -hypercyclic if there exists {x1, x2, . . . , xn} ⊆ H such that

n⋃
i=1

(orb(T, xi) ∩M) = M.

We say F = {x1, x2, . . . , xn} ⊆ H is a minimal set for multiM -hypercyclicity
for T ∈ B(H) if for any E ⊂ F we have⋃

xi∈E
(orb(T, xi) ∩M) 6= M.

It is clear by the definition that subspace-hypercyclic operators are multi
subspace-hypercyclic.

In this paper, we investigate multi subspace-hypercyclic operators. In Sec-
tion 2, we prove that multi-hypercyclic operators are multi subspace-hyper-
cyclic. We show that if T is M -hypercyclic or multi M -hypercyclic, then Tn

is multi M -hypercyclic for any natural number n and by this, make examples
of multi subspace-hypercyclic operators. We prove that multi M -hypercyclic
operators have somewhere dense orbits in M . Also, we show that if T is a multi
M -hypercyclic operator, then ker(T ∗ − λ) ⊆M⊥.

In Section 3, we show that analytic Toeplitz operators can not be multi
subspace-hypercyclic. We state a sufficient condition for coanalytic Toeplitz
operators to be multi subspace-hypercyclic.

2. Some results and examples

In this section, we present some properties of multi subspace-hypercyclic
operators. First, we show that multi-hypercyclic operators are multi subspace-
hypercyclic.

Theorem 2.1. Let T ∈ B(H) be a multi-hypercyclic operator. Then T is multi
subspace-hypercyclic with respect to a closed and non-trivial subspace M of H.

Proof. Let x1, x2, . . . , xn be elements in H such that
⋃

1≤i≤n orb(T, xi) is dense
in H. By Theorem 1.1, there exists a closed and non-trivial subspace M of H
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such that (
⋃

1≤i≤n orb(T, xi)) ∩M is dense in M . But⋃
1≤i≤n

(orb(T, xi) ∩M) = (
⋃

1≤i≤n

orb(T, xi)) ∩M.

Hence T is multi subspace-hypercyclic with respect to M . �

In the next theorem, we show that multi subspace-hypercyclicity of T implies
multi subspace-hypercyclicity of Tn.

Theorem 2.2. Let T ∈ B(H). If T is multi subspace-hypercyclic with respect
to M , then Tn is multi subspace-hypercyclic with respect to M for any n ∈ N.

Proof. When n = 1 the proof is obvious. Consider that n ≥ 2. By hypoth-
esis, T is multi M -hypercyclic. So there is x1, x2, . . . , xm in H such that⋃

1≤i≤m(orb(T, xi) ∩M) is dense in M . Let yi,j = T jxi, where 1 ≤ i ≤ m
and 1 ≤ j ≤ n− 1. Consider that

(1)
⋃

1≤i≤m

(orb(T, xi) ∩M) =
⋃

1≤i≤m
0≤j≤n−1

(orb(Tn, yi,j) ∩M).

The left side of (1) is dense in M . So the other side of (1) must be dense in
M too. So Tn is multi subspace-hypercyclic with respect to M . �

Now by Theorem 2.1 and Theorem 2.2, we can conclude that if T is multi-
hypercyclic, then Tn is multi subspace-hypercyclic for any natural number n.

Theorem 2.3. Let T ∈ B(H). Suppose that there exists n ∈ N such that
Tn is multi subspace-hypercyclic with respect to M . Then T is multi subspace-
hypercyclic with respect to M .

Proof. Let n be a positive integer greater than or equal to 2 such that Tn is
multi subspace-hypercyclic with respect to M . So there exist x1, x2, . . . , xm in
H such that

(2)
⋃

1≤i≤m

(orb(Tn, xi) ∩M) = M.

But

(3) orb(Tn, xi) ∩M ⊆ orb(T, xi) ∩M.

Now by (2) and (3), we conclude that
⋃

1≤i≤m(orb(T, xi) ∩M) is dense in M .
Therefore T is multi M -hypercyclic. �

It is said in Section 1 that subspace-hypercyclic operators are multi subspace-
hypercyclic. In the next theorem, we show that if T is subspace-hypercycclic,
then Tn is multi subspace-hypercyclic for any natural number n.

Theorem 2.4. Let T ∈ B(H) be an M -hypercyclic operator. Then Tn is multi
M -hypercyclic for any n ∈ N.
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Proof. It is clear when n = 1. Now let n ≥ 2. Let x be an M -hypercyclic vector
for T . Hence orb(T, x) ∩M = M . But if we consider x1 := x, x2 := Tx, . . .,
xn := Tn−1x, then

n⋃
j=1

(orb(Tn, T j−1x) ∩M)

= (orb(Tn, x) ∪ orb(Tn, Tx) ∪ · · · ∪ orb(Tn, Tn−1x)) ∩M
= {x, Tx, . . . , Tn−1x, Tnx, Tn+1x, . . .} ∩M
= orb(T, x) ∩M.

Therefore Tn is multi M -hypercyclic. �

By using Theorem 2.4, we can make some examples as follows.

Example 2.5. Let T be a hypercyclic operator on a Hilbert space H. If we
consider T⊕I : H⊕H → H⊕H, then T⊕I is subspace-hypercyclic with respect
to M := H⊕{0}. Now by Theorem 2.4, we can deduce that (T ⊕ I)n = Tn⊕ I
is multi M -hypercyclic for any n ∈ N.

Example 2.6. Let λ ∈ C with |λ| > 1. Suppose that B is the backward shift
on l2. It is proved in [11, Corollary 2] that T = λB is subspace-hypercyclic with
respect to any finite-codimensional subspace. So we can conclude from Theo-
rem 2.4 that Tn = λnBn is multi M -hypercyclic for any finite-codimensional
subspace M of l2.

Corollary 2.7. Let T ∈ B(H) be an operator with this property that Tn = I for
some n ∈ N. Then T can not be subspace-hypercyclic. Especially, if T = T−1

then T can not be subspace-hypercyclic.

Proof. Consider that Tn = I for some n ∈ N. Without loss of generality, we
can assume that n ≥ 2. Suppose on contrary that T is subspace-hypercyclic.
By Theorem 2.4, Tn must be multi subspace-hypercyclic. But this is impossible
since the identity operator can not be multi subspace-hypercyclic. �

We show in the following that multi subspace-hypercyclic operators have
somewhere dense orbits. For this, first, note to the following lemma.

Lemma 2.8 ([14]). Let X be a topological space and let F1, F2, . . . , Fn be a
finite family of closed subsets of X such that X =

⋃n
j=1 Fi. If (F1)◦ = φ, then

X =
⋃n
j=2 Fi.

Theorem 2.9. Let T ∈ B(H) be a multi M -hypercyclic operator. Then there
exists x ∈ H such that orb(T, x) ∩M is somewhere dense in M .

Proof. Let T be a multi M -hypercyclic operator with a minimal set {x1, x2, . . .,
xn} for multi M -hypercyclicity. So⋃

1≤i≤n

(orb(T, xi) ∩M) =
⋃

1≤i≤n

(orb(T, xi) ∩M) = M.
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Suppose that there is a xi0 , where 1 ≤ i0 ≤ n, such that orb(T, xi0) ∩M
is nowhere dense. That means (orb(T, xi0) ∩M)◦ = φ. Then by Lemma

2.8,
⋃

1≤i≤n
i 6=i0

(orb(T, xi) ∩M) = M . But this contradicts to minimality of

{x1, x2, . . . , xn}. So (orb(T, xi0) ∩M)◦ 6= φ. Therefore orb(T, xi0) ∩ M is
somewhere dense in M . Similarly, for any other xi with 1 ≤ i ≤ n, we can
conclude that orb(T, xi) ∩M is somewhere dense in M . �

In the proof of Theorem 2.9, we can assume without loss of generality that
xi ∈ M for any 1 ≤ i ≤ n. So we can say that if T ∈ B(H) is a multi
M -hypercyclic operator, then there exists x ∈ M such that orb(T, x) ∩M is
somewhere dense in M .

Bourdon and Feldman in [3] showed that for a locally convex space X and
for T ∈ B(X), somewhere density of orb(T, x) in X implies density of orb(T, x)
in X. But this result is not true for subspace somewhere dense orbits. In [7]
authors constructed an operator T on a Banach space X such that Orb(T, x)∩
M is somewhere dense in M , but it is not everywhere dense in M .

By above note and this fact that multi-hypercyclic operators are hypercyclic,
the following question arises:

Question. Let T be multi M -hypercyclic. Can we conclude that T is M -
hypercyclic?

Theorem 2.10. Let T ∈ B(H) be a multi M -hypercyclic operator. Then
ker(T ∗

n − λ) ⊆M⊥ for any n ∈ N.

Proof. Let T be a multi M -hypercyclic operator, where M is a closed and
non-trivial subspace of H. First, we prove the case n = 1. Suppose that
ϕ ∈ ker(T ∗ − λ). We show that ϕ = 0 on M . Let {x1, x2, . . . , xn} be a

minimal set for multi M -hypercyclicity of T . So
⋃

1≤i≤n(orb(T, xi) ∩M) = M .

By Theorem 2.9, orb(T, x1) ∩M is somewhere dense in M . Without loss of
generality, we can assume that x1 ∈ orb(T, x1)∩M and 0 ∈ orb(T, x1)∩M . So
there exist increasing sequences {nk} and {mk} of natural numbers such that
Tnkx1 → x1 and Tmkx1 → 0, where Tnkx1, T

mkx1 ∈M for any k. Hence

ϕ(Tnkx1)→ ϕ(x1) and ϕ(Tmkx1)→ 0.

But ϕ ∈ ker(T ∗ − λ). So ϕ(Tx1) = λ(ϕx1). Therefore

λnkϕ(x1)→ ϕ(x1) and λmkϕ(x1)→ 0.

Hence ϕ(x1) = 0 and therefore

orb(T, x1) ∩M ⊆ ker(ϕ) ∩M.

But orb(T, x1) ∩M contains an open set in M . Hence ker(ϕ) ∩M = ker(ϕ)
∩M contains an open set in M . But this indicates that ϕ|M = 0. Hence
ϕ ∈M⊥.

Now by Theorem 2.3 and note to this fact that (T ∗)n = (Tn)∗, we can infer
that ker(T ∗n − λ) ⊆M⊥ for n ≥ 2. �
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3. Multi subspace-hypercyclicity of Toeplitz operators

In this section, we peruse the multi subspace-hypercyclicity of Toeplitz op-
erators. Let us recall some preliminaries.

Definition ([10, Definition 1.1.1]). The Hardy-Hilbert space consists of an-
alytic functions such that having power series representation with square-
summable complex coefficients and it is denoted by H2. That means

H2 = {f : f(z) = Σ∞n=0anz
n and Σ∞n=0|an|2 <∞}.

It is not hard to see that H2 is a Hilbert space and any function in H2 is
analytic on the unit disk ([10]).

The symbol D is used to indicate the open unit disk in C. That is D = {z ∈
C : |z| < 1}. Also, The symbol S1 is used to indicate the unit circle in C. That
is S1 = {z ∈ C : |z| = 1}.

Let L2 = L2(S1) be the Hilbert space of square-integrable functions on S1

with respect to Lebesque measure, normalized so that the measure of the entire
circle is 1. The Hardy-Hilbert space is a subspace of L2 [10, p. 5].

The space H∞ consists of all functions that are bounded and analytic on
the D. When f ∈ H∞, we define ||f ||∞ = sup{|f(z)| : z ∈ D}. It is proved
that H2 ∩ L∞ = H∞, where L∞ = L∞(S1) is the set of essentially bounded
functions on S1(one can see [11] and [10, Definition 1.1.23]).

Definition ([10]). Let φ ∈ L∞. We denote the Toeplitz operator with symbol
φ by Tφ and for any f ∈ H2 we define it by Tφf = Pφf , where P is the
orthogonal projection of L2 onto H2.

If φ ∈ H∞, we say that Tφ is an analytic Toeplitz operator. We say Tφ is a
coanalytic Toeplitz operator if T ∗φ is analytic.

Note that if φ ∈ H∞, then for any f ∈ H2 we have Tφf = Pφf = φf . Also,
for φ ∈ H∞ since T ∗φ = Tφ, we can conclude that Tφ is coanalytic if and only

if φ ∈ H∞.
It is established in [9] that an analytic Toeplitz operator can not be subspace-

hypercyclic. In the next theorem, we extend their conclusion and we show that
an analytic Toeplitz operator can not be multi subspace-hypercyclic. First,
recall that for any λ ∈ D, reproducing kernel kλ : D→ C defined by:

kλ(z) = Σ∞n=0λ
n
zn =

1

1− λz
.

It is proved that kλ ∈ H2 and if ∆ ⊆ D be a set with an accumulation point in
D, then span{kλ : λ ∈ ∆} is dense in H2 (one can see [5, Proposition 4.38 and
Lemma 4.39]).

Theorem 3.1. An analytic Toeplitz operator can not be multi subspace-hyper-
cyclic with respect to a closed and non-trivial subspace M of H2.
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Proof. Let Tφ be an analytic Toeplitz operator. Suppose on contrary that Tφ
is multi subspace-hypercyclic with respect to a closed and non-trivial subspace
M of H2. Let λ ∈ D and let kλ be the reproducing kernel of λ. So kλ ∈
ker(T ∗φ − φ(λ)). But ker(T ∗φ − φ(λ)) ⊆M⊥. Therefore kλ ∈M⊥. So

span{kλ : λ ∈ D} ⊆M⊥.

That means H2 ⊆ M⊥ and this is a contradiction. So Tφ can not be multi
M -hypercyclic. �

Godefroy and Shapiro in [4] state a sufficient condition for hypercyclicity of
coanalytic Toeplitz operators as follows.

Theorem 3.2 ([4]). Let φ ∈ H∞ be non-constant. If φ(D)∩ S1 is non-empty,
then T ∗φ is hypercyclic.

By Theorem 3.2, we can express a sufficient condition for multi subspace-
hypercyclicity of powers of a coanalytic Toeplitz operator.

Corollary 3.3. Let φ ∈ H∞ be non-constant. If φ(D)∩S1 is non-empty, then
T ∗φ

n is multi subspace-hypercyclic for any n ∈ N.

Proof. By hypothesis, φ(D) ∩ S1 is non-empty. So by Theorem 3.2, T ∗φ is
hypercyclic. By Theorem 1.1, we can find a non-trivial and closed subspace M
of H2 such that T ∗φ is M -hypercyclic. Now we can conclude by Theorem 2.4

that T ∗φ
n is multi M -hypercyclic for any n ∈ N. �

References
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