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ON MULTI SUBSPACE-HYPERCYCLIC OPERATORS

MANSOOREH MOOSAPOOR

ABSTRACT. In this paper, we introduce and investigate multi subspace-
hypercyclic operators and prove that multi-hypercyclic operators are
multi subspace-hypercyclic. We show that if T is M-hypercyclic or multi
M-hypercyclic, then T"™ is multi M-hypercyclic for any natural num-
ber n and by using this result, make some examples of multi subspace-
hypercyclic operators. We prove that multi M-hypercyclic operators have
somewhere dense orbits in M. We show that analytic Toeplitz operators
can not be multi subspace-hypercyclic. Also, we state a sufficient condi-
tion for coanalytic Toeplitz operators to be multi subspace-hypercyclic.

1. Introduction and preliminaries

Let H be an infinite-dimensional and separable Hilbert space. We denote
the set of all linear continuous operators on H by B(H). We say an operator
T € B(H) is hypercyclic, if there is € H such that orb(T,x) is dense in H,
where

orb(T,x) = {z,Tx, T?z,...}.
The concept of hypercyclicity is a notable matter in dynamical systems and
studied by mathematicians for many years. One can read [4] and [5] to see
some interesting material on this topic.

We say that T is multi-hypercyclic, if there is {1, 22,...,2,} € H such
that ", orb(T, z;) is dense in H.

Herrero in [6] conjectured that on a Hilbert space, multi-hypercyclic oper-
ators are hypercyclic. Peris in [14] proved that this conjecture is true even
for multi-hypercyclic operators that are defined on an arbitrary locally convex
space. Also, Miller proved in [12, Theorem 3] that if 7' is multi-hypercyclic,
then T is multi-hypercyclic for any natural number n.

Subspace-hypercyclic operators were defined by Madore and Martinez- Aven-
dano in [9]. We say an operator T' € B(H) is subspace-hypercyclic with respect
to a closed subspace M of H if there is € H such that orb(T,z) N M is dense
in M. They proved in [9] that subspace-hypercyclic operators do not exist
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on finite-dimensional spaces. Bamerni, Kadets and Kilicman proved in [1] the
following interesting theorem.

Theorem 1.1 ([1]). Let A be a dense subset of a Hilbert space H. Then there
exists a non-trivial closed subspace M of H such that AN M is dense in M.

By Theorem 1.1, they stated in [1] that any hypercyclic operator is subspace-
hypercyclic. Also, one can discover in [2], [8], and [13], more knowledge about
subspace-hypercyclic operators and related topics. Now it is natural to define
multi subspace-hypercyclic operators as follows.

Definition. Let T' € B(H) and let M be a closed and non-zero subspace of
H. We say that T is multi subspace-hypercyclic with respect to M or multi
M-hypercyclic if there exists {x1,za,...,2,} C H such that

J(orb(T,z:) n M) = M.
i=1
Wesay F' = {x1,22,...,2,} C H is a minimal set for multi M-hypercyclicity
for T € B(H) if for any E C F' we have

U (orb(T, z:) N M) # M.
z,€EE

It is clear by the definition that subspace-hypercyclic operators are multi
subspace-hypercyclic.

In this paper, we investigate multi subspace-hypercyclic operators. In Sec-
tion 2, we prove that multi-hypercyclic operators are multi subspace-hyper-
cyclic. We show that if T is M-hypercyclic or multi M-hypercyclic, then T™
is multi M-hypercyclic for any natural number n and by this, make examples
of multi subspace-hypercyclic operators. We prove that multi M-hypercyclic
operators have somewhere dense orbits in M. Also, we show that if T" is a multi
M-hypercyclic operator, then ker(T* —\) C M*.

In Section 3, we show that analytic Toeplitz operators can not be multi
subspace-hypercyclic. We state a sufficient condition for coanalytic Toeplitz
operators to be multi subspace-hypercyclic.

2. Some results and examples

In this section, we present some properties of multi subspace-hypercyclic
operators. First, we show that multi-hypercyclic operators are multi subspace-
hypercyclic.

Theorem 2.1. Let T € B(H) be a multi-hypercyclic operator. Then T is multi
subspace-hypercyclic with respect to a closed and non-trivial subspace M of H.

Proof. Let z1,%2,...,x, be elements in H such that U1gign orb(T, ;) is dense
in H. By Theorem 1.1, there exists a closed and non-trivial subspace M of H
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such that (U, <<, orb(T,z;)) N M is dense in M. But

U (ord(T,z)n My =( | orb(T,z:)) N M.

1<i<n 1<i<n

Hence T is multi subspace-hypercyclic with respect to M. O

In the next theorem, we show that multi subspace-hypercyclicity of T implies
multi subspace-hypercyclicity of 7.

Theorem 2.2. Let T € B(H). If T is multi subspace-hypercyclic with respect
to M, then T™ is multi subspace-hypercyclic with respect to M for any n € N.

Proof. When n = 1 the proof is obvious. Consider that n > 2. By hypoth-
esis, T is multi M-hypercyclic. So there is xy,x2,...,%, in H such that
Uy <icm(orb(T,z;) N M) is dense in M. Let y;; = T?x;, where 1 < i < m
and 1 < j <n —1. Consider that

(1) U (orb(T,z;) N M) = U (orb(T™,y; ;) N M).
1<i<m 1<i<m
0<j<n—1
The left side of (1) is dense in M. So the other side of (1) must be dense in
M too. So T™ is multi subspace-hypercyclic with respect to M. (I

Now by Theorem 2.1 and Theorem 2.2, we can conclude that if T is multi-
hypercyclic, then T™ is multi subspace-hypercyclic for any natural number n.

Theorem 2.3. Let T € B(H). Suppose that there exists n € N such that
T™ is multi subspace-hypercyclic with respect to M. Then T is multi subspace-
hypercyclic with respect to M.

Proof. Let n be a positive integer greater than or equal to 2 such that T™ is

multi subspace-hypercyclic with respect to M. So there exist x1,x2, ..., Ty, in
H such that
(2) U (orb(Tm, ;) N M) = M.
1<i<m
But
(3) orb(T",z;) "M C orb(T, z;) N M.
Now by (2) and (3), we conclude that (J, -, ,,(orb(T,z;) N M) is dense in M.
Therefore T' is multi M-hypercyclic. o O

It is said in Section 1 that subspace-hypercyclic operators are multi subspace-
hypercyclic. In the next theorem, we show that if T is subspace-hypercycclic,
then T™ is multi subspace-hypercyclic for any natural number n.

Theorem 2.4. Let T € B(H) be an M -hypercyclic operator. Then T™ is multi
M -hypercyclic for any n € N.
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Proof. Tt is clear when n = 1. Now let n > 2. Let x be an M-hypercyclic vector
for T. Hence orb(T,z) "M = M. But if we consider zy := x, x5 := Tx,...,
2y = T" 'z, then
U (orb(T™, T9 1 2) N M)
j=1
= (orb(T", ) Uorb(T™, Tx)U---Uorb(T", T" 'z)) N M
={z,Tx,... ., T" ‘o, T e, T" e, .} N M
= orb(T,z) N M.
Therefore T™ is multi M-hypercyclic. (I
By using Theorem 2.4, we can make some examples as follows.

Example 2.5. Let T be a hypercyclic operator on a Hilbert space H. If we
consider T®I : HOH — H®H, then T®1 is subspace-hypercyclic with respect
to M := H @ {0}. Now by Theorem 2.4, we can deduce that (T@ )" =T" @[
is multi M-hypercyclic for any n € N.

Example 2.6. Let A € C with |A\| > 1. Suppose that B is the backward shift
on (2. Tt is proved in [11, Corollary 2] that T' = AB is subspace-hypercyclic with
respect to any finite-codimensional subspace. So we can conclude from Theo-
rem 2.4 that T™ = A\"B"™ is multi M-hypercyclic for any finite-codimensional
subspace M of 2.

Corollary 2.7. Let T € B(H) be an operator with this property that T™ = I for
somen € N. Then T can not be subspace-hypercyclic. Especially, if T = T~!
then T can not be subspace-hypercyclic.

Proof. Consider that T = I for some n € N. Without loss of generality, we
can assume that n > 2. Suppose on contrary that T is subspace-hypercyclic.
By Theorem 2.4, T™ must be multi subspace-hypercyclic. But this is impossible
since the identity operator can not be multi subspace-hypercyclic. ([

We show in the following that multi subspace-hypercyclic operators have
somewhere dense orbits. For this, first, note to the following lemma.

Lemma 2.8 ([14]). Let X be a topological space and let Fy, Fs, ..., F, be a
finite family of closed subsets of X such that X = U?:l F;. If (F1)° = ¢, then
X = U?:g F;.

Theorem 2.9. Let T € B(H) be a multi M-hypercyclic operator. Then there
exists © € H such that orb(T,z) N M is somewhere dense in M.

Proof. Let T be a multi M-hypercyclic operator with a minimal set {21, z, . . .,
X} for multi M-hypercyclicity. So

U (orb(T,x;) N M) = U (orb(T,x;) N M) = M.

1<i<n 1<i<n
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Suppose that there is a x;,, where 1 < ig < n, such that orb(T,z;,) " M
is nowhere dense. That means (orb(T,z;,) N M)° = ¢. Then by Lemma
2.8, Ui<i<n (orb(T,z;) N M) = M. But this contradicts to minimality of

1710
{z1,22,...,2n}. So (orb(T,z;,) " M)° # ¢. Therefore orb(T,z;,) N M is
somewhere dense in M. Similarly, for any other x; with 1 < i < n, we can
conclude that orb(T,z;) N M is somewhere dense in M. O

In the proof of Theorem 2.9, we can assume without loss of generality that
x; € M for any 1 < i < n. So we can say that if T € B(H) is a multi
M-hypercyclic operator, then there exists x € M such that orb(T,z) N M is
somewhere dense in M.

Bourdon and Feldman in [3] showed that for a locally convex space X and
for T € B(X), somewhere density of orb(T, x) in X implies density of ord(T, x)
in X. But this result is not true for subspace somewhere dense orbits. In [7]
authors constructed an operator T' on a Banach space X such that Orb(T, x)N
M is somewhere dense in M, but it is not everywhere dense in M.

By above note and this fact that multi-hypercyclic operators are hypercyclic,
the following question arises:

Question. Let 7" be multi M-hypercyclic. Can we conclude that T is M-
hypercyclic?

Theorem 2.10. Let T' € B(H) be a multi M-hypercyclic operator. Then
ker(T*" —X) € M* for anyn € N.

Proof. Let T be a multi M-hypercyclic operator, where M is a closed and
non-trivial subspace of H. First, we prove the case n = 1. Suppose that
¢ € ker(T* — X). We show that ¢ = 0 on M. Let {z1,22,...,2,} be a
minimal set for multi M-hypercyclicity of T'. So (J;«;<,,(orb(T,x;) " M) = M.
By Theorem 2.9, orb(T,z1) N M is somewhere dense in M. Without loss of
generality, we can assume that 21 € orb(T,z1)NM and 0 € orb(T,z1) N M. So
there exist increasing sequences {ny} and {ms} of natural numbers such that
T xy — x1 and T™kx; — 0, where T™*x1, T™*x1 € M for any k. Hence

e(T™ 1) = (z1) and  o(T™ z1) = 0.
But ¢ € ker(T* — X). So ¢(Tx1) = Apx1). Therefore
A" p(z1) = @(z1) and A p(xy) — 0.
Hence ¢(x1) = 0 and therefore
orb(T,z1) N M C ker(p) N M.

But orb(T,z1) N M contains an open set in M. Hence ker(p) N M = ker(y)
NM contains an open set in M. But this indicates that o[y = 0. Hence
o€ M

Now by Theorem 2.3 and note to this fact that (7*)" = (T™)*, we can infer
that ker(T*™ — \) C M+ for n > 2. O
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3. Multi subspace-hypercyclicity of Toeplitz operators

In this section, we peruse the multi subspace-hypercyclicity of Toeplitz op-
erators. Let us recall some preliminaries.

Definition ([10, Definition 1.1.1]). The Hardy-Hilbert space consists of an-
alytic functions such that having power series representation with square-
summable complex coefficients and it is denoted by H?. That means

H? = {f: f(2) = 252 5a,2" and X2 |a,|* < oo}.

It is not hard to see that H? is a Hilbert space and any function in H? is
analytic on the unit disk ([10]).

The symbol D is used to indicate the open unit disk in C. That is D = {z €
C : |z| < 1}. Also, The symbol S* is used to indicate the unit circle in C. That
is S1={z€C:|z| =1}

Let L? = L?(S") be the Hilbert space of square-integrable functions on S!
with respect to Lebesque measure, normalized so that the measure of the entire
circle is 1. The Hardy-Hilbert space is a subspace of L? [10, p. 5].

The space H* consists of all functions that are bounded and analytic on
the D. When f € H*, we define ||f|| = sup{|f(2)|: z € D}. It is proved
that H2 N L = H*, where L = L>°(S%) is the set of essentially bounded
functions on S*(one can see [11] and [10, Definition 1.1.23]).

Definition ([10]). Let ¢ € L>°. We denote the Toeplitz operator with symbol
¢ by Ty and for any f € H? we define it by Tyf = P¢f, where P is the
orthogonal projection of L? onto H2.

If ¢ € H*, we say that Ty is an analytic Toeplitz operator. We say Ty is a
coanalytic Toeplitz operator if T; is analytic.

Note that if ¢ € H*, then for any f € H? we have Ty f = Pof = ¢ f. Also,
for ¢ € H* since T} = T, we can conclude that Ty is coanalytic if and only
if p € H*®.

It is established in [9] that an analytic Toeplitz operator can not be subspace-
hypercyclic. In the next theorem, we extend their conclusion and we show that
an analytic Toeplitz operator can not be multi subspace-hypercyclic. First,
recall that for any A € D, reproducing kernel k) : D — C defined by:

1

ka(z) = D0 N2 = T

It is proved that ky € H? and if A C D be a set with an accumulation point in
D, then span{ky : A € A} is dense in H? (one can see [5, Proposition 4.38 and
Lemma 4.39]).

Theorem 3.1. An analytic Toeplitz operator can not be multi subspace-hyper-
cyclic with respect to a closed and non-trivial subspace M of H2.
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Proof. Let Ty be an analytic Toeplitz operator. Suppose on contrary that T
is multi subspace-hypercyclic with respect to a closed and non-trivial subspace
M of H2. Let A € D and let ky be the reproducing kernel of A\. So ky €
ker(T} — ¢(X)). But ker(T}; — ¢(\)) € M*. Therefore ky € M*. So

span{ky : A € D} C M*.

That means H? C M* and this is a contradiction. So Tj can not be multi
M-hypercyclic. (I

Godefroy and Shapiro in [4] state a sufficient condition for hypercyclicity of
coanalytic Toeplitz operators as follows.

Theorem 3.2 ([4]). Let ¢ € H* be non-constant. If $(D) NSt is non-empty,
then T is hypercyclic.

By Theorem 3.2, we can express a sufficient condition for multi subspace-
hypercyclicity of powers of a coanalytic Toeplitz operator.

Corollary 3.3. Let ¢ € H* be non-constant. If $(D) NSt is non-empty, then
T;" is multi subspace-hypercyclic for any n € N.

Proof. By hypothesis, ¢(D) N S! is non-empty. So by Theorem 3.2, T3 is
hypercyclic. By Theorem 1.1, we can find a non-trivial and closed subspace M
of H? such that T % s M-hypercyclic. Now we can conclude by Theorem 2.4
that T(;;" is multi M-hypercyclic for any n € N. (]
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