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COMMON FIXED POINT FOR GENERALIZED

MULTIVALUED MAPPINGS VIA SIMULATION FUNCTION

IN METRIC SPACES

Swati Antal and U. C. Gairola

Abstract. The purpose of this paper is to introduce the notion of gen-
eralized multivalued Z-contraction and generalized multivalued Suzuki

type Z-contraction for pair of mappings and establish common fixed point

theorems for such mappings in complete metric spaces. Results obtained
in this paper extend and generalize some well known fixed point results

of the literature. We deduce some corollaries from our main result and
provide examples in support of our results.

1. Introduction

One of the fundamental and most useful results in fixed point theory is
Banach Contraction Principle [8]. This result has been extended in many di-
rections for single and multivalued cases on a metric space. In 1969, Nadler
[19] introduced the notion of multivalued contraction mapping and show that
such mapping has a fixed point on complete metric space. Then many fixed
point theorems have been proved by various authors as a generalization of the
Nadler’s theorem (see [4, 6, 9–11,15,17,18]).

Recently, F. Khojasteha et al. [14] introduced the notion of a simulation func-
tion with a view to consider a new class of contraction called Z-contraction.
They studied the existence and uniqueness of fixed point for Z-contraction type
operators. Using the idea of a simulation function, different contractive condi-
tions can be expressed in a simple and unified way. This class of Z-contraction
includes a large type of non-linear contraction existing in the literature (see
[1–3,7, 13,16,20,22,23]).

In this paper we introduce the notion of the generalized multivalued Z-
contraction and generalized multivalued Suzuki type Z-contraction for pair of
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mappings and establish some common fixed point theorems for such mappings
in complete metric spaces.

2. Preliminaries

Let (X, d) be a metric space and CB(X) denote the collection of all non-
empty closed and bounded subset of X. For x ∈ X and A,B ∈ CB(X), we
have

D(x,A) = inf{d(x, y) : y ∈ A}

and

H(A,B) = max
{

sup
x∈A

D(x,B), sup
y∈B

D(y,A)
}
.

The function H is a metric on CB(X) and is called a Hausdorff metric induced
by the metric d.

Theorem 2.1 ([19]). Let (X, d) be a complete metric space and T : X →
CB(X) be a contraction mapping such that

H(Tx, Ty) ≤ rd(x, y)

for all x, y ∈ X and for some r ∈ [0, 1). Then, there exists x∗ ∈ X such that
x∗ ∈ Tx∗.

Recently in 2015, Khojasteh et al. [14] introduced the notion of Z-contraction
with respect to ζ, which generalizes the Banach contraction principle and uni-
fies several known types of contraction.

Definition 2.1 ([14]). Let ζ : [0,∞) × [0,∞) → R be a mapping. Then ζ is
called a simulation function if it satisfies the following conditions:

(ζ1) ζ(0, 0) = 0;
(ζ2) ζ(t, s) < s− t for all s, t > 0;
(ζ3) if {tn}, {sn} are sequences in (0,∞) such that limn→∞ tn = limn→∞ sn

> 0, then lim supn→∞ ζ(tn, sn) < 0.

Argoubi et al. [5] slightly modified the definition of simulation function by
withdrawing the condition (ζ1).

Definition 2.2 ([5]). A simulation function is a mapping ζ : [0,∞)× [0,∞)→
R satisfying the following conditions:

(ζ2) ζ(t, s) < s− t, for all s, t > 0;
(ζ ′3) if {tn}, {sn} are sequences in (0,∞) such that limn→∞ tn = limn→∞ sn

> 0 and tn < sn, then lim supn→∞ ζ(tn, sn) < 0.

We denote the set of all simulation functions by Z. For examples of simula-
tion function we may refer to [12,14,23].
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Definition 2.3 ([20]). Let (X, d) be a metric space, F : X → X a mapping
and ζ ∈ Z. Then F is called a generalized Z-contraction with respect to ζ if

ζ(d(Fu, Fv),M(u, v)) ≥ 0 for all u, v ∈ X,
where

M(u, v) = max
{
d(u, v), d(u, Fu), d(v, Fv), d(u,Fv)+d(v,Fu)

2

}
.

On the other hand, A. Padcharoen et al. [21] defined the notion of generalized
Suzuki type Z-contraction on a metric spaces as follows.

Definition 2.4 ([21]). Let (X, d) be a metric space, F : X → X a mapping
and ζ ∈ Z. Then F is called a generalized Suzuki type Z-contraction with
respect to ζ if

1

2
d(u, Fu) < d(u, v)⇒ ζ(d(Fu, Fv),M(u, v)) ≥ 0,

for all distinct u, v ∈ X, where

M(u, v) = max
{
d(u, v), d(u, Fu), d(v, Fv), d(u,Fv)+d(v,Fu)

2

}
.

Motivated and inspired by Definition 2.3 and Definition 2.4, we introduce the
notion of generalized multivalued Z-contraction and generalized multivalued
Suzuki type Z-contraction for pair of mappings in metric space.

Definition 2.5. Let (X, d) be a metric space and F,G : X → CB(X). Then
the pair (F,G) is said to be a generalized multivalued Z-contraction for pair
of mappings with respect to ζ if

ζ(H(Fu,Gv),M(u, v)) ≥ 0,(1)

for all u, v ∈ X, where

M(u, v) = max
{
d(u, v), D(u, Fu), D(v,Gv), D(u,Gv)+D(v,Fu)

2

}
.

Definition 2.6. Let (X, d) be a metric space and F,G : X → CB(X). Then
the pair (F,G) is said to be a generalized multivalued Suzuki type Z-contraction
for pair of mappings with respect to ζ if

1

2
min{D(u, Fu), D(v,Gv)} < d(u, v)⇒ ζ(H(Fu,Gv),M(u, v)) ≥ 0,(2)

for all u, v ∈ X with Fu 6= Gv, where

M(u, v) = max
{
d(u, v), D(u, Fu), D(v,Gv), D(u,Gv)+D(v,Fu)

2

}
.

3. Main results

Now we state our main results.

Theorem 3.1. Let (X, d) be a complete metric space and F,G : X → CB(X)
be a pair of generalized multivalued Suzuki type Z-contractions with respect to
ζ. Then F and G have a common fixed point.
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Proof. Let u0 be an arbitrary point in X. Choose u1 ∈ Fu0. Then by the
definition of Hausdorff metric there exists u2 ∈ Gu1 such that

0 < d(u1, u2) = D(u1, Gu1) ≤ H(Fu0, Gu1).(3)

Assume that D(u0, Fu0) > 0 and D(u1, Gu1) > 0 then

1

2
min{D(u0, Fu0), D(u1, Gu1)} < d(u0, u1).

Therefore from (2) we have

0 ≤ ζ(H(Fu0, Gu1),M(u0, u1))

< M(u0, u1)−H(Fu0, Gu1).

Consequently, we get

d(u1, u2) ≤ H(Fu0, Gu1) < M(u0, u1),(4)

where

M(u0, u1) = max
{
d(u0, u1), D(u0, Fu0), D(u1, Gu1), D(u0,Gu1)+D(u1,Fu0)

2

}
≤ max

{
d(u0, u1), d(u0, u1), d(u1, u2), d(u0,u2)+d(u1,u1)

2

}
= max

{
d(u0, u1), d(u1, u2), d(u0,u2)

2

}
.

Since

d(u0, u2)

2
≤ d(u0, u1) + d(u1, u2)

2
≤ max

{
d(u0, u1), d(u1, u2)

}
,

M(u0, u1) ≤ max
{
d(u0, u1), d(u1, u2)

}
.

Suppose that max
{
d(u0, u1), d(u1, u2)

}
= d(u1, u2), then (4) becomes

d(u1, u2) ≤ H(Fu0, Gu1) < d(u1, u2),

which is a contradiction. Thus we conclude that

max
{
d(u0, u1), d(u1, u2)} = d(u0, u1).

By (4) we get

d(u1, u2) < d(u0, u1).

Similarly, for u2 ∈ Gu1 and u3 ∈ Fu2 we have

d(u2, u3) ≤ H(Gu1, Fu2) < d(u1, u2).

This implies

d(u2, u3) < d(u1, u2).

By continuing in this manner, we construct a sequence {un} in X such that
u2n+1 ∈ Fu2n and u2n+2 ∈ Gu2n+1, n = 0, 1, 2, . . . such that

0 < d(u2n+1, u2n+2) = D(u2n+1, Gu2n+1) ≤ H(Fu2n, Gu2n+1)
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and

1

2
min{D(u2n, Fu2n), D(u2n+1, Gu2n+1)} < d(u2n, u2n+1).

Hence from (2) we have

0 ≤ ζ(H(Fu2n, Gu2n+1),M(u2n, u2n+1))

< M(u2n, u2n+1)−H(Fu2n, Gu2n+1).

Consequently, we get

d(u2n+1, u2n+2) ≤ H(Fu2n, Gu2n+1) < M(u2n, u2n+1),(5)

where

M(u2n, u2n+1) = max
{
d(u2n, u2n+1), D(u2n, Fu2n), D(u2n+1, Gu2n+1),

D(u2n,Gu2n+1)+D(u2n+1,Fu2n)
2

}
≤ max

{
d(u2n, u2n+1), d(u2n, u2n+1), d(u2n+1, u2n+2),

d(u2n,u2n+2)
2

}
= max

{
d(u2n, u2n+1), d(u2n+1, u2n+2), d(u2n,u2n+2)

2

}
.

Since

d(u2n, u2n+2)

2
≤ [d(u2n, u2n+1) + d(u2n+1, u2n+2)]

2
≤ max{d(u2n, u2n+1), d(u2n+1, u2n+2)},

M(u2n, u2n+1) ≤ max{d(u2n, u2n+1), d(u2n+1, u2n+2)}.

Suppose that max{d(u2n, u2n+1), d(u2n+1, u2n+2)} = d(u2n+1, u2n+2), then
from (5) we have

d(u2n+1, u2n+2) ≤ H(Fu2n, Gu2n+1) < d(u2n+1, u2n+2)

which is a contradiction. So

max{d(u2n, u2n+1), d(u2n+1, u2n+2)} = d(u2n, u2n+1).

Then from (5) we have

d(u2n+1, u2n+2) ≤ H(Fu2n, Gu2n+1) < d(u2n, u2n+1).

This implies that

d(u2n+1, u2n+2) < d(u2n, u2n+1).(6)

Hence d(un+1, un+2) < d(un, un+1) for all n.
Therefore {d(un, un+1)} is a strictly decreasing sequence of non-negative real

numbers. Thus there exists L ≥ 0 such that

lim
n→∞

d(un, un+1) = L.
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We shall prove that L = 0. Suppose on the contrary that L > 0. Now by using
condition (ζ3) with tn = H(Fu2n, Gu2n+1) and sn = d(u2n, u2n+1), we have

0 ≤ lim sup
n→∞

ζ(H(Fu2n, Gu2n+1), d(u2n, u2n+1)) < 0

which is a contradiction. Thus we conclude that L = 0, i.e.,

lim
n→∞

d(un, un+1) = 0.(7)

Now we prove that {un} is a Cauchy sequence. Suppose to contrary, that it is
not a Cauchy sequence. We assume that there exist ε > 0 and two sequences
{n(k)} and {m(k)} of positive integers such that

n(k) > m(k) > k, d(un(k), um(k)) ≥ ε, d(un(k)−1, um(k)) < ε.(8)

Using the triangular inequality, we get

ε ≤ d(un(k), um(k)) ≤ d(un(k), un(k)−1) + d(un(k)−1, um(k))

< d(un(k), un(k)−1) + ε.

Now, by taking the limit as k →∞ and using (7) we obtain that

lim
k→∞

d(un(k), um(k)) = ε.(9)

Using the triangle inequality, we have

ε ≤ d(un(k), um(k)) ≤ d(un(k), um(k)+1) + d(um(k)+1, um(k))

and

d(un(k), um(k)+1) ≤ d(un(k), um(k)) + d(um(k), um(k)+1).

Again, by taking the limit as k →∞ and using (7), (8) and (9) we get

lim
n→∞

d(un(k), um(k)+1) = ε.(10)

Similarly, we obtain

lim
n→∞

d(un(k)+1, um(k)) = ε.(11)

Also, we observe that

d(un(k)+1, um(k)+1) ≤ d(un(k)+1, um(k)) + d(um(k), um(k)+1)

and

d(un(k)+1, um(k)) ≤ d(un(k)+1, um(k)+1) + d(um(k)+1, um(k)).

By taking the limit k →∞ and using (7), (9), (10) and (11) we obtain

lim
n→∞

d(un(k)+1, um(k)+1) = ε.(12)

From (7) and (8) we can choose a positive integer n0 ≥ 1 such that

1

2
min{D(un(k), Fun(k)), D(um(k), Gum(k))} <

ε

2
< d(un(k), um(k)).
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Hence, from (2) we get

0 ≤ ζ(H(Fun(k), Gum(k)),M(un(k), um(k)))

< M(un(k), um(k))−H(Fun(k), Gum(k)).

Consequently, we get

d(un(k)+1, um(k)+1) ≤ H(Fun(k), Gum(k)) < M(un(k), um(k)),(13)

where

M(un(k), um(k)) = max
{
d(un(k), um(k)), D(un(k), Fun(k)), D(um(k), Gum(k)),

D(un(k),Gum(k))+D(um(k),Fun(k))

2

}
≤ max

{
d(un(k), um(k)), d(un(k), un(k)+1), d(um(k), um(k)+1),

d(un(k), um(k)+1) + d(um(k), un(k)+1)

2

}
.

Letting k →∞ in the above inequality and by using (7), (9), (10) and (11), we
obtain

lim
n→∞

M(un(k), um(k)) = ε.

By using condition (ζ3) and (13) with tn = H(Fun(k), Gum(k)) and sn =
M(un(k), um(k)) we have

0 ≤ lim sup
n→∞

ζ
(
H(Fun(k), Gum(k)),M(un(k), um(k))

)
< 0

which is a contradiction. Hence {un} is a Cauchy sequence. Since X is complete
we can ensure that {un} converges to some u∗ ∈ X, i.e.,

lim
n→∞

d(un, u
∗) = 0

and so

lim
n→∞

d(un, u
∗) = lim

n→∞
d(u2n, u

∗) = lim
n→∞

d(u2n+1, u
∗) = 0.(14)

Now we claim that
1

2
min

{
D(un, Fun), D(u∗, Gu∗)} < d(un, u

∗)

or
1

2
min

{
D(u∗, Fu∗), D(un+1, Gun+1)} < d(u∗, un+1)(15)

for all n ∈ N. Suppose that it is not the case. Then there exists m ∈ N such
that

1

2
min

{
D(um, Fum), D(u∗, Gu∗)} ≥ d(um, u

∗)(16)

and
1

2
min

{
D(u∗, Fu∗), D(um+1, Gum+1)} ≥ d(u∗, um+1).(17)
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Therefore

2d(um, u
∗) ≤ min

{
D(um, Fum), D(u∗, Gu∗)

}
≤ min

{
d(um, u

∗) +D(u∗, Fum), D(u∗, Gu∗)
}

≤ d(um, u
∗) +D(u∗, Fum)

≤ d(um, u
∗) + d(u∗, um+1),

which implies that

d(um, u
∗) ≤ d(u∗, um+1).(18)

From (17) and (18)

d(um, u
∗) ≤ d(um+1, u

∗) ≤ 1

2
min

{
D(u∗, Fu∗), D(um+1, Gum+1)

}
.(19)

Since 1
2 min

{
D(um, Fum), D(u∗, Gu∗)} < d(um, um+1), from (2) we have

0 ≤ ζ(H(Fum, Gum+1),M(um, um+1))

< M(um, um+1)−H(Fum, Gum+1).

Consequently, we get

d(um+1, um+2) ≤ H(Fum, Gum+1) < M(um, um+1),(20)

where

M(um, um+1) = max
{
d(um, um+1), D(um, Fum), D(um+1, Gum+1),

D(um,Gum+1)+D(um+1,Fum)
2

}
≤ max

{
d(um, um+1), d(um, um+1), d(um+1, um+2),

d(um,um+2)+d(um+1,um+1)
2

}
= max

{
d(um, um+1), d(um+1, um+2), d(um,um+2)

2

}
.

Since

d(um, um+2)

2
≤ d(um, um+1) + d(um+1, um+2)

2

≤ max
{
d(um, um+1), d(um+1, um+2)

}
,

M(um, um+1) ≤ max
{
d(um, um+1), d(um+1, um+2)

}
.

Suppose that max{d(um, um+1), d(um+1, um+2)} = d(um+1, um+2), then from
(20) we have

d(um+1, um+2) ≤ H(Fum, Gum+1) < d(um+1, um+2),

which is a contradiction. Thus we conclude that

max{d(um, um+1), d(um+1, um+2)} = d(um, um+1).

By (20) we get that

d(um+1, um+2) < d(um, um+1).(21)



COMMON FIXED POINT FOR GENERALIZED MULTIVALUED MAPPINGS 1115

From (17), (19) and (21), we get

d(um+1, um+2) < d(um, um+1)

≤ d(um, u
∗) + d(u∗, um+1)

≤ 1

2
min

{
D(u∗, Fu∗), D(um+1, Gum+1)

}
+

1

2
min

{
D(u∗, Fu∗), D(um+1, Gum+1)

}
= min

{
D(u∗, Fu∗), D(um+1, Gum+1)

}
≤ d(um+1, um+2),

which is a contradiction. Hence (15) holds, i.e., for every n ≥ 2

1

2
min

{
D(un, Fun), D(u∗, Gu∗)} < d(un, u

∗)

holds. Hence from (2), it follows that for every n ≥ 2

0 ≤ ζ(H(Fun, Gu
∗),M(un, u

∗))(22)

< M(un, u
∗)−H(Fun, Gu

∗).

Consequently, we get

D(un+1, Gu
∗) ≤ H(Fun, Gu

∗) < M(un, u
∗),(23)

where

M(un, u
∗) = max

{
d(un, u

∗), D(un, Fun), D(u∗, Gu∗), D(un,Gu∗)+D(u∗,Fun)
2

}
≤ max

{
d(un, u

∗), d(un, un+1), D(u∗, Gu∗), D(un,Gu∗)+d(u∗,un+1)
2

}
.

Letting n→∞ and by using (7) and (14), we obtain

lim
n→∞

M(un, u
∗) = D(u∗, Gu∗).(24)

Now we prove that u∗ ∈ Gu∗. Suppose on the contrary that D(u∗, Gu∗) > 0.
Letting n→∞ in (23) we obtain

D(u∗, Gu∗) = lim
n→∞

D(un+1, Gu
∗)

≤ lim
n→∞

H(Fun, Gu
∗)

< lim
n→∞

M(un, u
∗) = D(u∗, Gu∗)

which is a contradiction. Therefore u∗ ∈ Gu∗.
Similarly, we can show that u∗ ∈ Fu∗. Thus F and G have a common fixed

point. �

Example 3.2. Let X = {0, 1, 2} and d : X ×X → [0,∞) be defined by

d(0, 1) = 1, d(0, 2) = 2, d(1, 2) = 3 and d(0, 0) = d(1, 1) = d(2, 2) = 0.

Then (X, d) is a complete metric space.
Define the mappings F,G : X ×X → CB(X) by
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Fu =

{
{0} u ∈ {0, 1},
{0, 1} u = 2

and Gu =

{
{0} u ∈ {0, 1},
{1} u = 2.

Let ζ : [0,∞)× [0,∞)→ R be defined by ζ(t, s) = 9
10s− t for all s, t ∈ [0,∞).

Now we verify inequality (2) for all u, v ∈ X with Fu 6= Gu. Note that for
all u, v ∈ {0, 1, 2} with Fu 6= Gu the inequality 1

2 min{D(u, Fu), D(v,Gv)} <
d(u, v) gives

(u, v) ∈
{

(0, 2), (2, 0), (1, 2), (2, 1)
}
.

Then from (2), we have

ζ
(
H(Fu,Gv),M(u, v)

)
=

9

10
M(u, v)−H(Fu,Gv) ≥ 0.

This implies that

H(Fu,Gv) ≤ 9

10
M(u, v).

Case (i) for u = 0, v = 2;

H(F0, G2) = H({0}, {1}) = 1 ≤ 9

10
M(0, 2).

Case (ii) for u = 2, v = 0;

H(F2, G0) = H({0, 1}, {0}) = 1 ≤ 9

10
M(2, 0).

Case (iii) for u = 1, v = 2;

H(F1, G2) = H({0}, {1}) = 1 ≤ 9

10
M(1, 2).

Case (iv) for u = 2, v = 1;

H(F2, G1) = H({0, 1}, {0}) = 1 ≤ 9

10
M(2, 1).

Thus all the hypothesis of Theorem 3.1 are satisfied. Hence 0 is a common
fixed point of F and G.

Example 3.3. Let X = {0, 2, 4} be endowed with the usual metric. Let
F,G : X → CB(X) be defined by

Fu =

{
{u6 } if u ∈ {0, 4},
{0, 16} if u = 2,

and Gu = {u4 } for all u ∈ X.

We now define ζ : [0,∞) × [0,∞) → R by ζ(t, s) = 5
6s − t for all s, t ∈ [0,∞).

Now we verify inequality (2) for all u, v ∈ X with Fu 6= Gv. Note that for all
u, v ∈ X with Fu 6= Gv the inequality 1

2 min{D(u, Fu), D(v,Gv)} < d(u, v)
gives

(u, v) ∈
{

(0, 2), (2, 0), (0, 4), (4, 0), (2, 4), (4, 2)
}
.
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Then from (2), we have

ζ
(
H(Fu,Gv),M(u, v)

)
=

5

6
M(u, v)−H(Fu,Gv) ≥ 0.

This implies that

H(Fu,Gv) ≤ 5

6
M(u, v).

Case (i) for u = 0, v = 2;

H(F0, G2) = H({0}, {1

2
}) =

1

2
≤ 5

6
M(0, 2).

Case (ii) for u = 2, v = 0;

H(F2, G0) = H({0, 1

6
}, {0}) =

1

6
≤ 5

6
M(2, 0).

Case (iii) for u = 0, v = 4;

H(F0, G4) = H({0}, {1}) = 1 ≤ 5

6
M(0, 4).

Case (iv) for u = 4, v = 0;

H(F4, G0) = H({2

3
}, {0}) =

2

3
≤ 5

6
M(4, 0).

Case (v) for u = 2, v = 4;

H(F2, G4) = H({0, 1

6
}, {1}) = 1 ≤ 5

6
M(2, 4).

Case (vi) for u = 4, v = 2;

H(F4, G2) = H({2

3
}, {1

2
}) =

1

6
≤ 5

6
M(4, 2).

Thus all the hypothesis of Theorem 3.1 are satisfied. Hence 0 is a common
fixed point of F and G.

Corollary 3.4. Let (X, d) be a complete metric space and F,G : X → CB(X)
be a pair of generalized multivalued Z-contractions with respect to ζ. Then F
and G have a common fixed point u∗ ∈ X and for u ∈ X the sequence {Fnu}
converges to u∗.

Corollary 3.5. Let (X, d) be a complete metric space and F : X → CB(X)
be a generalized multivalued Suzuki type Z-contraction with respect to ζ, i.e.,

1

2
D(u, Fu) < d(u, v)⇒ ζ(H(Fu, Fv),M(u, v)) ≥ 0,(25)

for all u, v ∈ X with u 6= v, where

M(u, v) = max
{
d(u, v), D(u, Fu), D(v, Fv), D(u,Fv)+D(v,Fu)

2

}
.

Then F has a fixed point u∗ ∈ X and for u ∈ X the sequence {Fnu} converges
to u∗.
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Proof. The proof follows from Theorem 3.1 by taking F = G. �

Example 3.6. Let X = {0, 1, 2} and d : X × X → [0,∞) be defined by
d(0, 1) = 1, d(0, 2) = 2, d(1, 2) = 2 and d(0, 0) = d(1, 1) = d(2, 2) = 0. Then
(X, d) is complete metric space. Define the mapping F : X → CB(X) by

F0 = F1 = {0}, F2 = {0, 1}.

Note that for all distinct u, v ∈ X the inequality 1
2D(u, Fu) < d(u, v). Hence

from (25), we shall show that

ζ(H(Fu, Fv),M(u, v)) ≥ 0.

We now define ζ : [0,∞) × [0,∞) → R by ζ(t, s) = 7
8s − t for all s, t ∈ [0,∞).

Thus we have

ζ(H(Fu, Fv),M(u, v)) =
7

8
M(u, v)−H(Fu, Fv) ≥ 0.

So, this implies that

H(Fu, Fv) ≤ 7

8
M(u, v).

For this, we consider the following cases:

Case 1: u, v ∈ {0, 1}, we have

H(Fu, Fv) = d(0, 0) = 0 ≤ 7

8
M(u, v).

Case 2: u ∈ {0, 1}, v = 2, we have

H(Fu, Fv) = H({0}, {0, 1}) = max{0, 1} = 1 ≤ 7

8
d(u, v) = 1.75 ≤ 7

8
M(u, v).

Thus all the hypothesis of Corollary 3.5 are satisfied. Here, u = 0 is the unique
fixed point of F .

Corollary 3.7. Let (X, d) be a complete metric space and F,G : X → X be a
pair of generalized single valued Suzuki type Z-contractions with respect to ζ,
i.e.,

1

2
min

{
d(u, Fu), d(v,Gv)

}
< d(u, v)⇒ ζ(d(Fu,Gv),M(u, v)) ≥ 0,(26)

for all u, v ∈ X with Fu 6= Gv, where

M(u, v) = max
{
d(u, v), d(u, Fu), d(v,Gv), d(u,Gv)+d(v,Fu)

2

}
.

Then F and G have a unique common fixed point u∗ ∈ X and for u ∈ X the
sequence {Fnu} converges to u∗.

Proof. It can be proved easily by taking F and G as single valued mappings in
Theorem 3.1. Uniqueness of the common fixed point is obvious. �

Remark 3.8. Corollary 3.7 is a generalization of Theorem 2.4 [21].
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Corollary 3.9. Let (X, d) be a complete metric space and F,G : X → X be a
pair of generalized single valued Z-contractions with respect to ζ, i.e.,

ζ(d(Fu,Gv),M(u, v)) ≥ 0,(27)

for all u, v ∈ X, where

M(u, v) = max
{
d(u, v), d(u, Fu), d(v,Gv), d(u,Gv)+d(v,Fu)

2

}
.

Then F and G have a unique common fixed point u∗ ∈ X and for u ∈ X the
sequence {Fnu} converges to u∗.

Remark 3.10. Corollary 3.9 is a generalization of Theorem 2 [20].

The following example shows that Corollary 3.7 is a generalization of Corol-
lary 3.9.

Example 3.11. Let X =
{

(0, 0), (0, 3), (3, 0), (0, 4), (4, 0), (3, 4), (4, 3)} and de-
fine metric d on X by

d[(u1, u2), (v1, v2)] = |u1 − v1|+ |u2 − v2|.

Let F,G : X → X be such that

Fu =

{
(u1, 0), u1 ≤ u2,
(0, u2), u1 > u2

and Gu =

{
(0, u1), u1 ≤ u2,
(0, u2), u1 > u2.

We now define ζ : [0,∞)× [0,∞)→ R by ζ(t, s) = 6
7s− t for all s, t ∈ [0,∞).

Then F and G do not satisfy the condition (27) of Corollary 3.9 at u = (3, 4)
and v = (4, 3). However, this is readily verified that all the hypotheses of
Corollary 3.7 are satisfied for the maps F and G.

Conclusion. In this article, we introduced the notion of generalized multival-
ued Z-contraction and generalized multivalued Suzuki type Z-contraction for
pair of mappings and establish common fixed point theorems for such mappings
in complete metric spaces. Our theorems and corollaries are sharpened version
of well known results. Our results extend and generalize some well known fixed
point result exists in the literature.
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