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ON ENGEL QUASI-NORMAL SUBGROUP IN DIVISION

RINGS WITH UNCOUNTABLE CENTER

Khoi Minh Nguyen-Duy

Abstract. The aim of this paper is to show that every Engel quasi-

normal subgroups of the unit group of a division ring with uncountable
center is central.

1. Introduction

Let G be a group. For a, b ∈ G and n > 1, we denote [a, 1b] by a−1b−1ab
and [a, nb] by [[a, n−1b], 1b]. An element a ∈ G is said to be left Engel in G
if for any g ∈ G there exists a positive integer ng such that [g, nga] = 1. If
every element of G is left-Engel, then G is called an Engel group. The topic
of Engel subgroups of the unit groups of algebras has been recently receiving a
great attention (e.g., see [1,2,4,5,11,13,15,16,18]). Also, the subject of locally
nilpotent groups and free subgroups of unit groups of division rings (e.g., see
[8–10,14] and citations therein) is also drawing a remarkable attention.

In this article, our work involves mainly with division rings and Engel quasi-
normal subgroups of their unit groups. The problem is inspired from a conjec-
ture that was posed in [15].

Conjecture 1.1 ([15, Question]). Let D be a division ring. Then Engel sub-
normal subgroups of D∗ are all central.

This conjecture is still an open problem even when we assume D∗ to be an
Engel group. However, several other special cases of the conjecture have been
addressed. One example is where D is given to be a locally finite division ring
[15]. Recall that a division ring D with center F is called locally finite if for
every finite subset S of D, the division subring F (S) of D generated by S over
F is finite dimensional over F . Recently, the case in which F is uncountable
has also been resolved [2].
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The answer to the conjecture would have great significance to the study of
Engel subgroups in general rings. One of the reasons for this comes from the
tactics that are used to solve such problem. For example, in [3], in order to
prove their results, the authors had to make use of skew linear groups. This
article mainly studies about a class of Engel quasi-normal subgroups of the unit
groups of division rings. Recall that, a subgroup H of the group G is called a
quasi-normal subgroup of G if HK = KH for any subgroup K of G. Clearly,
every normal subgroup is also a quasi-normal subgroup. Recently, a class of
quasi-normal subgroups of GLn(D) were also studied in [6]. In detail, if n > 1,
then every quasi-normal subgroup of GLn(D) is also normal in GLn(D). For
the case when n = 1, there is a counterexample for a division ring in which the
unit group contains a quasi-normal but non-subnormal subgroup [6, Section 4].
There is also a result in [6] showing that if D is a locally finite division ring,
then every non-central quasi-normal subgroup of D∗ contains a non-abelian
free subgroup. In particular, every Engel quasi-normal subgroup of the unit
group of a locally finite division ring is central. The aim of this paper is to
consider the conjecture for the case when N is a quasi-normal subgroup of D∗

in case the center of D is uncountable.
The technique we use in this paper is a modification of [2]. Our notations

are standard. For example, for a ring R, the notations Z(R) and R∗ are the
center and unit group of R. A subset S of R is called commuting if ab = ba for
every a, b ∈ S.

2. Main results

Let R be a ring and x a commuting indeterminate. By R[x], we denote the
polynomial ring in x over R. In case R = D is a division ring, then D[x] has the
(universal) division ring of fractions which is denoted by D(x). Every element
of D(x) has the form f(x)g(x)−1 where f(x), g(x) ∈ D[x] with g(x) 6= 0.
Inductively, we denote by D(x, y) the division ring D(x)(y). Similarly, every
element of D(x, y) has the form f(x, y)g(x, y)−1 where f(x, y), g(x, y) ∈ D[x, y].
The formal power series ring in x over R is denoted by R[[x]], that is, R[[x]]
is the ring of all formal power series

∑∞
i=0 aix

i = a0 + a1x + · · · , where ai ∈
R. Observe that if a0 is invertible in R, then so is

∑∞
i=0 aix

i in R[[x]] and

(
∑∞
i=0 aix

i)−1 = (1−α+α2−· · ·+(−1)iαi+· · · )a−10 , where α = a−10

∑∞
i=1 aix

i.
In particular, (1− ax)−1 = 1 + ax+ a2x2 + · · · for every a ∈ R.

Lemma 2.1 ([12, Lemma 1]). Let D be a division ring with center F and
D(x, y) the division ring of fractions of the polynomial ring D[x, y] in commut-
ing indeterminates x, y over D. If f(x, y) ∈ D(x, y) which satisfies f(λ1, λ2) ∈
F for infinitely many pairs (λ1, λ2) ∈ F × F , then f(x, y) ∈ F (x, y).

Lemma 2.2. Let D be a division ring with center F and N an abelian subgroup
of D∗. Then either N ⊆ F or D∗ is not radical over N .
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Proof. Assume on the contrary that N * F and D∗ is radical over N . We
will now seek for a contradiction. Since N is not central, D is then a non-
commutative ring. Denote K = F (N) as a division subring of D generated
by N over F . Since N is abelian, K is a subfield of D. Therefore K 6= D.
Since D∗ is radical over N , D∗ is also radical over K. Since neither D = F nor
D = K, according to [7, Theorem B], this is a contradiction. Therefore, either
N ⊆ F or D∗ is not radical over N . The proof is now complete. �

Lemma 2.3. Let D be a division ring with uncountable center F . Assume that
N is an Engel subgroup of D∗ such that D∗ is radical over N . Then, for every
a ∈ N ⊆ D(x, y)∗ and f(x, y) ∈ D(x, y)∗, there exist positive integers nf ,mf

such that [f(x, y)nf ,mf a] = 1.

Proof. Let a ∈ N and f(x, y) ∈ D(x, y)∗. We have f(x, y) = f1(x, y)f2(x, y)−1

where f1(x, y), f2(x, y) ∈ D[x, y] with f2(x, y) 6= 0. By [17, the Vandermonde
argument, Propositions 2.3.26 and 2.3.27], f1(λ1, λ2) = 0 or f2(λ1, λ2) = 0
only for finitely many λ1, λ2 ∈ F . There exist uncountably many central
pairs (λ1, λ2) ∈ F × F such that f(λ1, λ2) ∈ D∗. For each such λ1, λ2,
since D∗ is radical over N , there exists a positive integer nλ1,λ2 such that
f(λ1, λ2)nλ1,λ2 ∈ N . Moreover, because N is Engel, there exists mλ1,λ2 > 0
such that [f(λ1, λ2)nλ1,λ2 ,mλ1,λ2 a] = 1. Using the pigeon-hole principle, there

exist positive integers nf ,mf such that [f(λ1, λ2)nf ,mf a] = 1 for infinite
amount of pairs (λ1, λ2) ∈ F × F . Hence by Lemma 2.1, [f(x, y)nf ,mf a] ∈
F (x, y). Therefore, [f(x, y)nf ,mf+1 a] = 1. The proof is now complete. �

In order to prevent the hassle of redundancy, we will here present some
notion that may cause repetition in the rest of this paper.

For convenience, from now, D is a division ring with center F . Assume
that a, b ∈ D∗ such that ab 6= ba and [b, 2a] = 1. Let c = b−1ab, it should be
trivial that a 6= c and bc = ab. From [b, 2a] = 1, it is also easy to see that
a−1ca−1c−1a2 = 1. In other words, ac = ca.

Let R = D[x][[y]] be the formal power series ring in y over in D[x] and
let ◦ denote the operation defined via the formal power series term action
dxiyj ◦ α = dαaiyj for d ∈ D,α ∈ R, i, j ∈ N. R is then a left R-module with
◦. Let K = F [a, a−1, c, c−1][[y]]. Then, R is also a right K-module via the
right multiplication. It is then easy to verify that R is an (R,K)-bimodule.
Let M = 1K + bK be the right K-submodule of R generated by B = {1, b}.
Assume there exist k1, k2 ∈ K such that bk2 = −k1, thus abk2 = bk2a = bak2,
as a commutes with k1, k2. Thus (ab − ba)k2 = 0, implying k2 = 0. As a
consequence, k1 = 0 and hence B is linearly independent. M is thus a free
K-module whose basis is B.

Let

S = {r | r ∈ R, r ◦M ⊆M}.
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It can then be shown that S is a subring of R. Hence we define a map

φ : S → End(MK)

r 7→ φr,

where φr ∈ End(MK), φr(v) = r ◦ v for any v ∈M . It is easy to verify that φ
is a ring homomorphism and each φr is indeed a right K-endomorphism of M .

Since M is a free module of rank 2, End(MK) ∼= M2(K). For each module
endomorphism of M there is a corresponding matrix of order 2 with respect to
the basis of B. For f ∈ End(MK), let k11, k12, k21, k22 ∈ K such that f(1) =

1k11 + bk21 and f(b) = 1k12 + bk22. We might as well say that f =
[
k11 k12
k21 k22

]
.

For such arbitrary f ∈M2(K), there exists γ = (k11 + bk21)a−1(b− 1)−1(ba−
x)− (k12 + bk22)a−1(b− 1)−1(a− x) ∈ S such that φ(γ) = f . Hence, φ is also
an epimorphism.

Let r ∈ R. If r ◦ 1 ∈M and r ◦ b ∈M , then r ◦M ⊂M , that is r ∈ S. Also,
let s ∈ S such that φs is an invertible matrix. Since φsφs−1 = I, it is clear that
φs−1 = φ−1s .

Hence, from φa(1) = a ◦ 1 = a and φa(b) = a ◦ b = ab = bc, we conclude that

φa =

[
a 0
0 c

]
.

Also, it is easy to see that a−1 ∈ S and

φa−1 = φ−1a =

[
a−1 0
0 c−1

]
.

To show the main result, we also need the following result.

Lemma 2.4. Let d11 = −b(ab − ba)−1(bab−1 − x); d12 = (ab − ba)−1(a −
x); d21 = −b2(ab − ba)−1(bab−1 − x); and d22 = b(ab − ba)−1(a − x). Then,
d11, d12, d21, d22 ∈ S and

φd11 =

[
1 0
0 0

]
;φd12 =

[
0 1
0 0

]
;φd21 =

[
0 0
1 0

]
; and φd22 =

[
0 0
0 1

]
.

Proof. The result comes from these calculation:

d11 ◦ 1 = −b(ab− ba)−1(bab−1 − x) ◦ 1 = −b(ab− ba)−1(bab−1 − a)

= −b(ab− ba)−1(ba− ab)b−1 = 1.

d11 ◦ b = −b(ab− ba)−1(bab−1 − x) ◦ b = −b(ab− ba)−1(bab−1b− ba) = 0.

d12 ◦ 1 = (ab− ba)−1(a− x) ◦ 1 = (ab− ba)−1(a− a) = 0.

d12 ◦ b = (ab− ba)−1(a− x) ◦ b = (ab− ba)−1(ab− ba) = 1.

d21 ◦ 1 = −b2(ab− ba)−1(bab−1 − x) ◦ 1 = −b2(ab− ba)−1(bab−1 − a) = b.

d21 ◦ b = −b2(ab− ba)−1(bab−1 − x) ◦ b = −b2(ab− ba)−1(ba− ba) = 0.

d22 ◦ 1 = b(ab− ba)−1(a− x) ◦ 1 = b(ab− ba)−1(a− a) = 0.

d22 ◦ b = b(ab− ba)−1(a− x) ◦ b = b(ab− ba)−1(ab− ba) = b.
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All of the calculated elements are in M , thus d11, d12, d21, d22 ∈ S. By applying
the convention that corresponds each module homomorphism with a matrix,
our proof is now complete. �

The verification of this result is easy, thus it is skipped on purpose.

Lemma 2.5. Suppose [ 1 a0 1 ], [ b 0
0 c ] ∈ GL2(D). If {a, b, c} is commuting, then

for any positive integer m, [[ 1 a0 1 ] ,m [ b 0
0 c ]] =

[
1 (b−1c−1)ma
0 1

]
.

We are now ready to take on the main result.

Theorem 2.6. Every Engel quasi-normal subgroup of the unit group of a di-
vision ring with uncountable center is central.

Proof. Let D be a division ring with uncountable center F . Suppose N is
a quasi-normal subgroup of D∗ which is Engel. We must show that N ⊆ F .
Assume that N * F . According to [2] and [6, Lemma 2.4], it suffices to consider
the case when D∗ is radical over N . As a consequence of Lemma 2.2, N is a
non-abelian group. There exist a, b ∈ N such that ab 6= ba. Since N is Engel,
there exists a positive integer n = nb such that [b, na] = 1. It is clear that n ≥ 2
and by replacing b by [b, n−2a], without loss of generality, we can assume that
n = 2. Now we use the notations before Lemma 2.4 and consider two cases:

Case 1. Char(D) = 0. Assign f = 1+d12y = 1+(ab−ba)−1(a−x)y ∈ D[x, y].
It is easy to see that φf (1) = 1 and φf (b) = y + b, hence we can then say that
φf =

[
1 y
0 1

]
. Moreover,

f−1 = 1− d12y + d212y
2 − d312y3 + · · · ∈ R.

Then since φf ∈ GL2(K), f ◦M = M . So, we have

M = 1 ◦M = (f−1f) ◦M = f−1 ◦ (f ◦M) = f−1 ◦M,

which implies f−1 ∈ S.
Hence, φf−1 =

[
1 −y
0 1

]
. It can be seen that f ∈ D[x, y] ⊂ D(x, y), hence

f ∈ D(x, y)∗. By Lemma 2.3, there exist positive integers nf ,mf satisfying
[fnf ,mf a] = 1. Thus, according to Lemma 2.5,

I2 = φ([fnf ,mf a]) =

[
1 nf (a−1c− 1)mf y
0 1

]
.

We conclude that a = c, a contradiction.
Case 2. Char(D) = p > 0. Put α = (1 − ac−1)nd12, β = d21, v =

1 + yα,w = 1 + yβαβ and u = 1 + y(1− β)αβα(1 + β). Then, by Lemma 2.4,

φα =
[
0 (1−ac−1)n

0 0

]
and φβ = [ 0 0

1 0 ]. Then, φ2α = φ2β = 0, and φβα =[
0 0
0 (1−ac−1)n

]
, a non-nilpotent matrix. For s1, s2, s3 ∈ S, it is easily seen that

φs1 +φs2φs3 = φs1+s2s3 . Hence, by [10, Lemma 5.2], φv, φw, φu freely generate
a subgroup of GL2(K) which is isomorphic to the free product Zp ∗ Zp ∗ Zp,
where Zp is the cyclic group of order p. Using the same arguments in the
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first case, since u, v and w all have inverses in R and corresponding matrices
which are invertible, so u−1, v−1, w−1 ∈ S∗. Hence, 〈u, v, w〉 ∼= 〈φu, φv, φw〉.
Therefore, u, v, w freely generate a subgroup in S∗ which is isomorphic to the
free product Zp ∗ Zp ∗ Zp. As a corollary, if g = uvu and h = vwv, then g
and h freely generate a free subgroup of S∗. Following [17, the Vandermonde
argument, Propositions 2.3.26 and 2.3.27], there exist infinitely many λ1 and
λ2 in F such that g(λ1, λ2)h(λ1, λ2) 6= 0. Since D∗ is radical over N , there is a
positive integer kg such that g(λ1, λ2)kg ∈ N . Applying Lemma 2.3, there ex-
ist two positive integers nh,g,mh,g such that [h(x, y)nh,g ,mh,g g(λ1, λ2)kg ] = 1.

In particular, [h(λ1, λ2)nh,g ,mh,g g(λ1, λ2)kg ] = 1. By using Lemma 2.1, what

follows is that [hnh,g ,mh,g g
kg ] ∈ F (x, y). Hence, [hnh,g ,mh,g+1 g

kg ] = 1, which
contradicts the fact that g and h generate a free group.

In either case, our assumption leads to a contradiction. Hence, N is central.
The proof is now complete. �
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