References
- Adamowski, J.F. (2008), "Development of a short-term river flood forecasting method for snowmelt driven floods based on wavelet and cross wavelet analysis", J. Hydrol., 353(3-4), 247-266. https://doi.org/10.1016/j.jhydrol.2008.02.013.
- Agrawal, V. and Sharma, A. (2010), "Prediction of slump in concrete using artificial neural networks", World Acad. Sci., Eng. Technol., 45, 25-32.
- ASTM C309-19 (2019), Standard Specification for Liquid Membrane-Forming Compounds for Curing Concrete, ASTM International, West Conshohocken. PA.
- Atici, U. (2011), "Prediction of the strength of mineral admixture concrete using multivariable regression analysis and an artificial neural network", Exp. Syst. Appl., 38(8), 9609-9618. https://doi.org/10.1016/j.eswa.2011.01.156.
- Atis, C.D. (2005), "Strength properties of high-volume fly ash roller compacted and workable concrete, and influence of curing condition", Cement Concrete Res., 35(6), 1112-1121. https://doi.org/10.1016/j.cemconres.2004.07.037.
- Babu, K.G. and Rao, G.S.N. (1994), "Early strength behavior of fly ash concretes", Cement Concrete Res., 24(2), 277-284. https://doi.org/10.1016/0008-8846(94)90053-1.
- Cabrera, J.G. and Claisse, P.A. (1990), "Measurement of chloride penetration into silica fume concrete", Cement Concrete Compos., 12(3), 157-161. https://doi.org/10.1016/0958-9465(90)90016-Q.
- Chou, J.H. and Ghaboussi, J. (2001), "Genetic algorithm in structural damage detection", Comput. Struct., 79(14), 1335-1353. https://doi.org/10.1016/S0045-7949(01)00027-X.
- Chou, J.S. and Pham, A.D. (2013), "Enhanced artificial intelligence for ensemble approach to predicting high performance concrete compressive strength", Constr. Build. Mater., 49, 554-563. https://doi.org/10.1016/j.conbuildmat.2013.08.078.
- Craven, P. and Wahba, G. (1978), "Smoothing noisy data with spline functions", Numerische Mathematik, 31(4), 377-403. https://doi.org/10.1007/BF01404567.
- Davraz, M., Ceylan, H., Topcu, I.B. and Uygunoglu, T. (2018), "Pozzolanic effect of andesite waste powder on mechanical properties of high strength concrete", Constr. Build. Mater., 165, 494-503. https://doi.org/10.1016/j.conbuildmat.2018.01.043.
- Detwiler, R.J., Bhatty, J.I. and Battacharja, S. (1996), Supplementary Cementing Materials for Use in Blended Cements, No. R&D Bulletin RD112T.
- Dutta, S., Samui, P. and Kim, D. (2018), "Comparison of machine learning techniques to predict compressive strength of concrete", Comput. Concrete, 21(4), 463-470. https://doi.org/10.12989/cac.2018.21.4.463.
- Esmaeili-Falak, M. (2017), "Effect of system's geometry on the stability of frozen wall in excavation of saturated granular soils", Doctoral dissertation, University of Tabriz.
- Esmaeili-Falak, M., Katebi, H. and Javadi, A.A. (2020b), "Effect of freezing on stress-strain characteristics of granular and cohesive soils", J. Cold Reg. Eng., 34(2), 05020001. https://doi.org/10.1061/(ASCE)CR.1943-5495.0000205.
- Esmaeili-Falak, M., Katebi, H., Vadiati, M. and Adamowski, J. (2019), "Predicting triaxial compressive strength and Young's modulus of frozen sand using artificial intelligence methods", J. Cold Reg. Eng., 33(3), 04019007. https://doi.org/10.1061/(ASCE)CR.1943-5495.0000188.
- Esmaeili-Falak, M., Sarkhani Benemaran, R. and Seifi, R. (2020a), "Improvement of the mechanical and durability parameters of construction concrete of the Qotursuyi Spa", Concrete Res., 13(2), 81-90. https://doi.org/10.22124/JCR.2020.14518.1395.
- Esmaeili, F.M., Lotfi, E.A. and Nematzadeh, S. (2019), "Improvement of mechanical parameters of concrete yielded from pozzolanic cement for irrigation and drainage projects", 6(23), 43-58. https://doi.org/10.22065/JSCE.2017.100834.1349.
- Felekoglu, B., Turkel, S. and Baradan, B. (2007), "Effect of water/cement ratio on the fresh and hardened properties of self-compacting concrete", Build. Environ., 42(4), 1795-1802. https://doi.org/10.1016/j.buildenv.2006.01.012.
- Friedman, J.H. (1991), "Multivariate adaptive regression splines", Ann. Statist., 1-67. https://www.jstor.org/stable/2241837.
- Ghrici, M., Kenai, S. and Said-Mansour, M. (2007), "Mechanical properties and durability of mortar and concrete containing natural pozzolana and limestone blended cements", Cement Concrete Compos., 29(7), 542-549. https://doi.org/10.1016/j.cemconcomp.2007.04.009.
- Hubertova, M. and Hela, R. (2007), "The effect of metakaolin and silica fume on the properties of lightweight self consolidating concrete", Spec. Publ., 243, 35-48.
- Kennedy, J. and Eberhart, R. (1995), "Particle swarm optimization", Proceedings of ICNN'95-International Conference on Neural Networks, 4, 1942-1948. https://doi.org/10.1109/ICNN.1995.488968.
- Kjellsen, K.O., Wallevik, O.H. and Hallgren, M. (1999), "On the compressive strength development of high-performance concrete and paste-effect of silica fume", Mater. Struct., 32(1), 63. https://doi.org/10.1007/BF02480414.
- Lam, L., Wong, Y.L. and Poon, C.S. (1998), "Effect of fly ash and silica fume on compressive and fracture behaviors of concrete", Cement Concrete Res., 28(2), 271-283. https://doi.org/10.1016/S0008-8846(97)00269-X.
- Lee, S.C. (2003), "Prediction of concrete strength using artificial neural networks", Eng. Struct., 25(7), 849-857. https://doi.org/10.1016/S0141-0296(03)00004-X.
- Mahdavi Adeli, M. and Hormozi, N. (2014), "Comparison between traditional and modern methods of concrete curing and maintenance concrete in hot climates from a cost and performance viewpoint", First National Conference on Architecture, Civil and Environmental Environment, Hamedan, Hegmataneh Environmental Assessors Association.
- Mahmodi, K. and Ketabdari, M.J. (2017), "High performance concrete using artificial neural network and multiple linear regression", Civil Eng., 105-115. https://doi.org/10.24200/j30.2018.1010.1586.
- Mohamed, O. (2018), "Durability and compressive strength of high cement replacement ratio self-consolidating concrete", Build., 8(11), 153. https://doi.org/10.3390/buildings8110153.
- Mohamed, O. and Najm, O. (2019), "Effect of curing methods on compressive strength of sustainable self-consolidated concrete", IOP Conf. Ser.: Mater. Sci. Eng., 471(3), 032059. https://doi.org/10.1088/1757-899X/471/3/032059.
- Mohamed, O.A. (2019), "Effect of mix constituents and curing conditions on compressive strength of sustainable self-consolidating concrete", Sustain., 11(7), 2094. https://doi.org/10.3390/su11072094.
- Mohamed, O.A. and Najm, O.F. (2016), "Splitting tensile strength of self-consolidating concrete containing slag", Proceedings of AES-ATEMA International Conference, Advances and Trends in Engineering Materials and their Applications, 109-114. https://doi.org/10.1016/j.proeng.2016.04.157.
- Muduli, P.K., Das, S.K. and Das, M.R. (2013), "Prediction of lateral load capacity of piles using extreme learning machine", Int. J. Geotech. Eng., 7(4), 388-394. https://doi.org/10.1179/1938636213Z.00000000041.
- Nassr, A., Esmaeili-Falak, M., Katebi, H. and Javadi, A. (2018), "A new approach to modeling the behavior of frozen soils", Eng. Geol., 246, 82-90. https://doi.org/10.1016/j.enggeo.2018.09.018.
- Nochaiya, T., Wongkeo, W. and Chaipanich, A. (2010), "Utilization of fly ash with silica fume and properties of Portland cement-fly ash-silica fume concrete", Fuel, 89(3), 768-774. https://doi.org/10.1016/j.fuel.2009.10.003.
- Oreta, A.W. and Ongpeng, J. (2011), "Modeling the confined compressive strength of hybrid circular concrete columns using neural networks", Comput. Concrete, 8(5), 597-616. https://doi.org/10.12989/cac.2011.8.5.597.
- Pala, M., Ozbay, E., Oztas, A. and Yuce, M.I. (2007), "Appraisal of long-term effects of fly ash and silica fume on compressive strength of concrete by neural networks", Constr. Build. Mater., 21(2), 384-394. https://doi.org/10.1016/j.conbuildmat.2005.08.009.
- Rasoli, M. and Abbasi, B. (2008), "Investigation of the effect of silica soot on the properties of concrete generated", isn.ac/XYKB-BHKHB.
- Samui, P. (2013), "Determination of compressive strength of concrete by statistical learning algorithms", Eng. J., 17(1), 111-120. https://doi.org/10.4186/ej.2013.17.1.111.
- Saridemir, M. (2014), "Effect of specimen size and shape on compressive strength of concrete containing fly ash: Application of genetic programming for design", Mater. Des., 56, 297-304. https://doi.org/10.1016/j.matdes.2013.10.073.
- Seyedpoor, S.M., Salajegheh, J., Salajegheh, E. and Gholizadeh, S. (2011), "Optimal design of arch dams subjected to earthquake loading by a combination of simultaneous perturbation stochastic approximation and particle swarm algorithms", Appl. Soft Comput., 11(1), 39-48. https://doi.org/10.1016/j.asoc.2009.10.014.
- Tavakkol, S., Alapour, F., Kazemian, A., Hasaninejad, A., Ghanbari, A. and Ramezanianpour, A.A. (2013), "Prediction of lightweight concrete strength by categorized regression, MLR and ANN", Comput. Concrete, 12, 151-167. https://doi.org/10.12989/cac.2013.12.2.151.
- Topcu, I.B. and Saridemir, M. (2008), "Prediction of compressive strength of concrete containing fly ash using artificial neural networks and fuzzy logic", Comput. Mater. Sci., 41(3), 305-311. https://doi.org/10.1016/j.commatsci.2007.04.009.
- Toutanji, H., Delatte, N., Aggoun, S., Duval, R. and Danson, A. (2004), "Effect of supplementary cementitious materials on the compressive strength and durability of short-term cured concrete", Cement Concrete Res., 34(2), 311-319. https://doi.org/10.1016/j.cemconres.2003.08.017.
- Turk, K., Turgut, P., Karatas, M. and Benli, A. (2010), "Mechanical properties of selfcompacting concrete with silica fume/fly ash", 9th International Congress on Advances in Civil Engineering, 27-30.
- Yaprak, H., Karaci, A. and Demir, I. (2013), "Prediction of the effect of varying cure conditions and w/c ratio on the compressive strength of concrete using artificial neural networks", Neur. Comput. Appl., 22(1), 133-141. https://doi.org/10.1007/s00521-011-0671-x.
Cited by
- Predicting CBR value of stabilized pond ash with lime and lime sludge using multivariate adaptive regression splines vol.3, pp.4, 2021, https://doi.org/10.1088/2631-8695/ac3c9f