References
- Akkose, M., Sunca, F. and Turkay, A. (2018). "Pushover analysis of prefabricated structures with various partially fixity rates", Earthq. Struct. 14(1), 21-32. https://doi.org/10.12989/eas.2018.14.1.021.
- API RP.2A-WSD (2010), Recommended Practice for Planning, Designing and Constructing Fixed Offshore Platforms-Working Stress Design. American Petroleum Institute; Washington, U.S.A.
- Badoni, D. and Makris, N. (1996), "Nonlinear response of single piles under lateral inertial and seismic loads", Soil Dyn Earthq. Eng. 15(1), 29-43. https://doi.org/10.1016/0267-7261(95)00027-5.
- Boulanger, R.W., Curras, C.J., Kutter, B.L., Wilson, D.W. and Abghari, A. (1999), "Seismic soil-pile-structure interaction experiments and analyses", J. Geotech. Geoenviron. Eng. 125(9), 750-759. https://doi.org/10.1061/(ASCE)1090-0241(1999)125:9(750).
- Cai, Y.X., Gould, P.L. and Desai, C.S. (2000), "Nonlinear analysis of 3D seismic interaction of soil-pile-structure systems and application", Eng. Struct. 22(2), 191-199. https://doi.org/10.1016/S0141-0296(98)00108-4.
- Chau, K.T., Shen, C.Y. and Guo, X. (2009), "Nonlinear seismic soil-pile-structure interactions: Shaking table tests and FEM analyses", Soil Dyn. Earthq. Eng. 29(2), 300-310. https://doi.org/10.1016/j.soildyn.2008.02.004.
- Chiou, J.S., Yang, H.H. and Chen, C.H. (2009), "Use of plastic hinge model in nonlinear pushover analysis of a pile", J Geotech. Geoenviron. Eng. 135(9), 1341-1346. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000015.
- Dhar, S., Ozcebe, A.G., Dasgupta, K., Petrini, L. and Paolucci, R. (2019), "Different approaches for numerical modeling of seismic soil-structure interaction: impacts on the seismic response of a simplified reinforced concrete integral bridge", Earthq. Struct. 17(4), 373-385. https://doi.org/10.12989/eas.2019.17.4.373.
- GB/T50123 (2019), Standard for geotechnical testing method. Ministry of Housing and Urban-Rural Development, Beijing, China.
- Goit, C.S., Saitoh, M. and Mylonakis, G. (2016), "Principle of superposition for assessing horizontal dynamic response of pile groups encompassing soil nonlinearity", Soil Dyn. Earthq. Eng., 82, 73-83. https://doi.org/10.1016/j.soildyn.2015.11.001.
- Gonzalez, F., Padron, L.A., Carbonari, S., Morici, M., Aznarez, J. J., Dezi, F. and Leoni, G. (2019), "Seismic response of bridge piers on pile groups for different soil damping models and lumped parameter representations of the foundation", Earthq. Eng. Struct. Dyn. 48(3), 306-327. https://doi.org/10.1002/eqe.3137.
- Gou, H., Leng, D., Yang, L. and Jia, H. (2019), "Modeling the cumulative residual deformation of high-speed railway bridge pier subjected to multiple earthquakes", Earthq. Struct. 17(3), 317-327. https://doi.org/10.12989/eas.2019.17.3.317.
- He, X., Wu, T., Zou, Y., Chen, Y.F., Guo, H. and Yu, Z. (2017), "Recent developments of high-speed railway bridges in China", Struct. Infrastruct. Eng. 13(12), 1584-1595. https://doi.org/10.1080/15732479.2017.1304429.
- Hochi, Y., Murono, Y., Saitoh, M. and Goit, C.S. (2019), "Earthquake motion filtering effect by pile foundations considering nonlinearity of soil and piles", Soil Dyn. Earthq. Eng. 125, 105748. https://doi.org/10.1016/j.soildyn.2019.105748.
- Jia, H., Zhao, J., Li, X., Li, L. and Zheng, S. (2018), "Probabilistic pounding analysis of high-pier continuous rigid frame bridge with actual site conditions", Earthq. Struct., 15(2), 193-202. https://doi.org/10.12989/eas.2018.15.2.193.
- JTS 167-4 (2012), Code for pile foundation of harbor engineering. Chinese Ministry of Transport; Beijing, China.
- Kimura, M. and Zhang, F. (2000) "Seismic evaluations of pile foundations with three different methods based on threedimensional elasto-plastic finite element analysis", Soils Found., 40(5), 113-132. https://doi.org/10.3208/sandf.40.5_113.
- Lu, J., Chen, X., Ding, M., Zhang, X., Liu, Z. and Yuan, H. (2019), "Experimental and numerical investigation of the seismic performance of railway piers with increasing longitudinal steel in plastic hinge area", Earthq. Struct., 17(6), 545-556. https://doi.org/10.12989/eas.2019.17.6.545.
- Luo, X. (2005), "Study on methodology for running safety assessment of trains in seismic design of railway structures", Soil Dyn. Earthq. Eng., 25(2), 79-91. https://doi.org/10.1016/j.soildyn.2004.10.005.
- Luo, X., Murono, Y. and Tanamura, S. (2001), "Seismic Performance Assessment of Existing Pile Group Foundation", Quarterly Report of RTRI 42(3), 136-142. http://worldcat.org/oclc/3127232. https://doi.org/10.2219/rtriqr.42.136
- Maheshwari, B.K., Truman, K.Z., El Naggar, M.H. and Gould, P. L. (2004), "Three-dimensional nonlinear analysis for seismic soil-pile-structure interaction", Soil Dyn. Earthq. Eng. 24(4), 343-356. https://doi.org/10.1016/j.soildyn.2004.01.001.
- Maki, T. and Mutsuyoshi, H. (2004), "Seismic behavior of reinforced concrete piles under ground", J. Advan. Concrete Technol., 2(1), 37-47. https://doi.org/10.3151/jact.2.37.
- Mander, J.B., Priestley, M.J.N. and Park, R. (1988), "Theoretical stress-strain model for confined concrete", J. Struct. Eng., 4(8), 804-1826. https://doi.org/10.1061/(ASCE)0733-9445(1988)114:8(1804).
- RTRI (1999), Seismic design code for railway structures. Railway Technical Research Institute, Tokyo, Japan.
- Taha, A., Hesham El Naggar, M. and Turan, A. (2015), "Numerical modeling of the dynamic lateral behavior of geosyntheticsreinforced pile foundation system", Soil Dyn. Earthq. Eng. 77, 254-266. https://doi.org/10.1016/j.soildyn.2015.05.017.
- Tahghighi, H. and Konagai, K. (2007), "Numerical analysis of nonlinear soil-pile group interaction under lateral loads", Soil Dyn. Earthq. Eng., 27(5), 463-474. https://doi.org/10.1016/j.soildyn.2006.09.005.
- TB 10093 (2017), Code for design on subsoil and foundation of railway bridge and culvert, Chinese National Railway Administration, Beijing, China.
- Wang, Z., Dueñas-Osorio, L. and Padgett, J.E. (2013) "Seismic response of a bridge-soil-foundation system under the combined effect of vertical and horizontal ground motions", Earthq. Eng. Struct. Dyn., 42(4), 545-564. https://doi.org/10.1002/eqe.2226.
- Wei, B., Li, C. and He, X. (2019), "The applicability of different earthquake intensity measures to the seismic vulnerability of a high-speed railway continuous bridge", Int. J. Civil Eng. 17(7), 981-997. https://doi.org/10.1007/s40999-018-0347-3.
- Yu, Y.J., Tsai, K.C., Li, C.H., Weng, Y.T. and Tsai, C.Y. (2013), "Earthquake response analyses of a full-scale five-story steel frame equipped with two types of dampers", Earthq. Eng. Struct. Dyn., 42(9), 1301-1320. https://doi.org/10.1002/eqe.2273.
- Zhang, F., Kimura, M., Nakai, T. and Hoshikawa, T. (2000), "Mechanical behavior of pile foundations subjected to cyclic lateral loading up to the ultimate state", J. Japanese Geotech. Soc., 40(5), 1-17. https://doi.org/10.3208/sandf.40.5_1.
Cited by
- Study on lateral behavior of digging well foundation with consideration of soil-foundation interaction vol.24, pp.1, 2021, https://doi.org/10.12989/gae.2021.24.1.015