References
- Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A. and Jemal, A. (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 68, 394-424. https://doi.org/10.3322/caac.21492
- Bultman, S. J. (2017) Interplay between diet, gut microbiota, epigenetic events, and colorectal cancer. Mol. Nutr. Food Res. 61, 1500902.
- Choi, P. R., Kang, Y. J., Sung, B., Kim, J. H., Moon, H. R., Chung, H. Y., Kim, S. E., Park, M. I., Park, S. J. and Kim, N. D. (2015) MHY218-induced apoptotic cell death is enhanced by the inhibition of autophagy in AGS human gastric cancer cells. Int. J. Oncol. 47, 563-572. https://doi.org/10.3892/ijo.2015.3031
- Dai, H., Sinclair, D. A., Ellis, J. L. and Steegborn, C. (2018) Sirtuin activators and inhibitors: promises, achievements, and challenges. Pharmacol. Ther. 188, 140-154. https://doi.org/10.1016/j.pharmthera.2018.03.004
- De, U., Son, J. Y., Sachan, R., Park, Y. J., Kang, D., Yoon, K., Lee, B. M., Kim, I. S., Moon, H. R. and Kim, H. S. (2018) A new synthetic histone deacetylase inhibitor, MHY2256, induces apoptosis and autophagy cell death in endometrial cancer cells via p53 acetylation. Int. J. Mol. Sci. 19, 2743. https://doi.org/10.3390/ijms19092743
- Heltweg, B., Gatbonton, T., Schuler, A. D., Posakony, J., Li, H., Goehle, S., Kollipara, R., Depinho, R. A., Gu, Y., Simon, J. A. and Bedalov, A. (2006) Antitumor activity of a small-molecule inhibitor of human silent information regulator 2 enzymes. Cancer Res. 66, 4368-4377. https://doi.org/10.1158/0008-5472.CAN-05-3617
- Heo, G., Kang, D., Park, C., Kim, S. J., Choo, J., Lee, Y., Yoo, J. W., Jung, Y., Lee, J., Kim, N. D., Chung, H. Y., Moon, H. R. and Im, E. (2019) Pro-apoptotic effect of the novel benzylidene derivative MHY695 in human colon cancer cells. Oncol. Lett. 18, 3256-3264.
- Hu, J., Jing, H. and Lin, H. (2014) Sirtuin inhibitors as anticancer agents. Future Med. Chem. 6, 945-966. https://doi.org/10.4155/fmc.14.44
- Hwangbo, H., Kim, S. Y., Lee, H., Park, S. H., Hong, S. H., Park, C., Kim, G. Y., Leem, S. H., Hyun, J. W., Cheong, J. and Choi, Y. H. (2020) Auranofin enhances sulforaphane-mediated apoptosis in hepatocellular carcinoma Hep3B cells through inactivation of the PI3K/Akt signaling pathway. Biomol. Ther. (Seoul) 28, 443-455. https://doi.org/10.4062/biomolther.2020.122
- Jang, J. Y., Kang, Y. J., Sung, B., Kim, M. J., Park, C., Kang, D., Moon, H. R., Chung, H. Y. and Kim, N. D. (2018) MHY440, a novel topoisomerase Ι inhibitor, induces cell cycle arrest and apoptosis via a ROS-dependent DNA damage signaling pathway in AGS human gastric cancer cells. Molecules 24, 96. https://doi.org/10.3390/molecules24010096
- Jiang, Y., Liu, J., Chen, D., Yan, L. and Zheng, W. (2017) Sirtuin inhibition: strategies, inhibitors, and therapeutic potential. Trends Pharmacol. Sci. 38, 459-472. https://doi.org/10.1016/j.tips.2017.01.009
- Kaufmann, S. H., Lee, S. H., Meng, X. W., Loegering, D. A., Kottke, T. J., Henzing, A. J., Ruchaud, S., Samejima, K. and Earnshaw, W. C. (2008) Apoptosis-associated caspase activation assays. Methods 44, 262-272. https://doi.org/10.1016/j.ymeth.2007.11.005
- Lain, S., Hollick, J. J., Campbell, J., Staples, O. D., Higgins, M., Aoubala, M., McCarthy, A., Appleyard, V., Murray, K. E., Baker, L., Thompson, A., Mathers, J., Holland, S. J., Stark, M. J., Pass, G., Woods, J., Lane, D. P. and Westwood, N. J. (2008) Discovery, in vivo activity, and mechanism of action of a small-molecule p53 activator. Cancer Cell 13, 454-463. https://doi.org/10.1016/j.ccr.2008.03.004
- Lee, Y., Sung, B., Kang, Y. J., Kim, D. H., Jang, J. Y., Hwang, S. Y., Kim, M., Lim, H. S., Yoon, J. H., Chung, H. Y. and Kim, N. D. (2014) Apigenin-induced apoptosis is enhanced by inhibition of autophagy formation in HCT116 human colon cancer cells. Int. J. Oncol. 44, 1599-1606. https://doi.org/10.3892/ijo.2014.2339
-
Liu, S. L., Liu, Z., Zhang, L. D., Zhu, H. Q., Guo, J. H., Zhao, M., Wu, Y. L., Liu, F. and Gao, F. H. (2017)
$GSK3{\beta}$ -dependent cyclin D1 and cyclin E1 degradation is indispensable for NVP-BEZ235 induced G0/G1 arrest in neuroblastoma cells. Cell Cycle 16, 2386-2395. https://doi.org/10.1080/15384101.2017.1383577 - Martinez-Redondo, P. and Vaquero, A. (2013) The diversity of histone versus nonhistone sirtuin substrates. Genes Cancer 4, 148-163. https://doi.org/10.1177/1947601913483767
- Mellini, P., Carafa, V., Di Rienzo, B., Rotili, D., De Vita, D., Cirilli, R., Gallinella, B., Provvisiero, D. P., Di Maro, S., Novellino, E., Altucci, L. and Mai, A. (2012) Carprofen analogues as sirtuin inhibitors: enzyme and cellular studies. ChemMedChem 7, 1905-1908. https://doi.org/10.1002/cmdc.201200318
- Mellini, P., Kokkola, T., Suuronen, T., Salo, H. S., Tolvanen, L., Mai, A., Lahtela-Kakkonen, M. and Jarho, E. M. (2013) Screen of pseudopeptidic inhibitors of human sirtuins 1-3: two lead compounds with antiproliferative effects in cancer cells. J. Med. Chem. 56, 6681-6695. https://doi.org/10.1021/jm400438k
- O'Callaghan, C. and Vassilopoulos, A. (2017) Sirtuins at the crossroads of stemness, aging, and cancer. Aging Cell 16, 1208-1218. https://doi.org/10.1111/acel.12685
- Park, E. Y., Woo, Y., Kim, S. J., Kim, D. H., Lee, E. K., De, U., Kim, K. S., Lee, J., Jung, J. H., Ha, K. T., Choi, W. S., Kim, I. S., Lee, B. M., Yoon, S., Moon, H. R. and Kim, H. S. (2016) Anticancer effects of a new SIRT inhibitor, MHY2256, against human breast cancer MCF-7 cells via regulation of MDM2-p53 binding. Int. J. Biol. Sci. 12, 1555-1567. https://doi.org/10.7150/ijbs.13833
- Peck, B., Chen, C. Y., Ho, K. K., Di Fruscia, P., Myatt, S. S., Coombes, R. C., Fuchter, M. J., Hsiao, C. D. and Lam, E. W. (2010) SIRT inhibitors induce cell death and p53 acetylation through targeting both SIRT1 and SIRT2. Mol. Cancer Ther. 9, 844-855. https://doi.org/10.1158/1535-7163.MCT-09-0971
- Rotili, D., Tarantino, D., Nebbioso, A., Paolini, C., Huidobro, C., Lara, E., Mellini, P., Lenoci, A., Pezzi, R., Botta, G., Lahtela-Kakkonen, M., Poso, A., Steinkühler, C., Gallinari, P., De Maria, R., Fraga, M., Esteller, M., Altucci, L. and Mai, A. (2012) Discovery of salermide-related sirtuin inhibitors: binding mode studies and antiproliferative effects in cancer cells including cancer stem cells. J. Med. Chem. 55, 10937-10947. https://doi.org/10.1021/jm3011614
- Takahashi-Yanaga, F. and Sasaguri, T. (2008) GSK-3beta regulates cyclin D1 expression: a new target for chemotherapy. Cell. Signal. 20, 581-589. https://doi.org/10.1016/j.cellsig.2007.10.018
- Villalba, J. M. and Alcain, F. J. (2012) Sirtuin activators and inhibitors. Biofactors 38, 349-359. https://doi.org/10.1002/biof.1032
- Wang, T., Xu, Z., Lu, Y., Shi, J., Liu, W., Zhang, C., Jiang, Z., Qi, B. and Bai, L. (2019) Recent progress on the discovery of Sirt2 inhibitors for the treatment of various cancers. Curr. Top. Med. Chem. 19, 1051-1058. https://doi.org/10.2174/1568026619666190510103416
- Yanar, K., Simsek, B. and Cakatay, U. (2019) Integration of melatonin related redox homeostasis, aging, and circadian rhythm. Rejuvenation Res. 22, 409-419. https://doi.org/10.1089/rej.2018.2159
- Zhang, Y., Anoopkumar-Dukie, S., Arora, D. and Davey, A. K. (2020) Review of the anti-inflammatory effect of SIRT1 and SIRT2 modulators on neurodegenerative diseases. Eur. J. Pharmacol. 867, 172847. https://doi.org/10.1016/j.ejphar.2019.172847
- Zhou, Z., Ma, T., Zhu, Q., Xu, Y. and Zha, X. (2018) Recent advances in inhibitors of sirtuin1/2: an update and perspective. Future Med. Chem. 10, 907-934. https://doi.org/10.4155/fmc-2017-0207
Cited by
- Insight Into Nicotinamide Adenine Dinucleotide Homeostasis as a Targetable Metabolic Pathway in Colorectal Cancer vol.12, 2020, https://doi.org/10.3389/fphar.2021.758320
- Autophagy Modulators in Cancer Therapy vol.22, pp.11, 2020, https://doi.org/10.3390/ijms22115804