References
- Abekawa, T., Ohmori, T. and Koyama, T. (1994) Effects of repeated administration of a high dose of methamphetamine on dopamine and glutamate release in rat striatum and nucleus accumbens. Brain Res. 643, 276-281. https://doi.org/10.1016/0006-8993(94)90033-7
- Ashabi, G., Sadat-Shirazi, M. S., Khalifeh, S., Elhampour, L. and Zarrindast, M. R. (2017) NMDA receptor adjusted co-administration of ecstasy and cannabinoid receptor-1 agonist in the amygdala via stimulation of BDNF/Trk-B/CREB pathway in adult male rats. Brain Res. Bull. 130, 221-230. https://doi.org/10.1016/j.brainresbull.2017.01.020
- Berberich, S., Jensen, V., Hvalby, O., Seeburg, P. H. and Kohr, G. (2007) The role of NMDAR subtypes and charge transfer during hippocampal LTP induction. Neuropharmacology 52, 77-86. https://doi.org/10.1016/j.neuropharm.2006.07.016
- Bhattacharya, S., Mukherjee, B., Dore, J. J. E., Yuan, Q., Harley, C. W. and McLean, J. H. (2017) Histone deacetylase inhibition induces odor preference memory extension and maintains enhanced AMPA receptor expression in the rat pup model. Learn. Mem. 24, 543-551. https://doi.org/10.1101/lm.045799.117
- Bowyer, J. F. and Ali, S. (2006) High doses of methamphetamine that cause disruption of the blood-brain barrier in limbic regions produce extensive neuronal degeneration in mouse hippocampus. Synapse 60, 521-532. https://doi.org/10.1002/syn.20324
- Brami-Cherrier, K., Valjent, E., Herve, D., Darragh, J., Corvol, J. C., Pages, C., Arthur, S. J., Girault, J. A. and Caboche, J. (2005) Parsing molecular and behavioral effects of cocaine in mitogen- and stress-activated protein kinase-1-deficient mice. J. Neurosci. 25, 11444-11454. https://doi.org/10.1523/JNEUROSCI.1711-05.2005
- Cadet, J. L. (2016) Epigenetics of stress, addiction, and resilience: therapeutic implications. Mol. Neurobiol. 53, 545-560. https://doi.org/10.1007/s12035-014-9040-y
- Cadet, J. L., Jayanthi, S., McCoy, M. T., Ladenheim, B., Saint-Preux, F., Lehrmann, E., De, S., Becker, K. G. and Brannock, C. (2013) Genome-wide profiling identifies a subset of methamphetamine (METH)-induced genes associated with METH-induced increased H4K5Ac binding in the rat striatum. BMC Genomics 14, 545. https://doi.org/10.1186/1471-2164-14-545
- Caldeira, M. V., Melo, C. V., Pereira, D. B., Carvalho, R. F., Carvalho, A. L. and Duarte, C. B. (2007) BDNF regulates the expression and traffic of NMDA receptors in cultured hippocampal neurons. Mol. Cell. Neurosci. 35, 208-219. https://doi.org/10.1016/j.mcn.2007.02.019
- Cammarota, M., Bevilaqua, L. R., Medina, J. H. and Izquierdo, I. (2008) ERK1/2 and CaMKII-mediated events in memory formation: is 5HT regulation involved? Behav. Brain Res. 195, 120-128. https://doi.org/10.1016/j.bbr.2007.11.029
- Cao, G., Zhu, J., Zhong, Q., Shi, C., Dang, Y., Han, W., Liu, X., Xu, M. and Chen, T. (2013) Distinct roles of methamphetamine in modulating spatial memory consolidation, retrieval, reconsolidation and the accompanying changes of ERK and CREB activation in hippocampus and prefrontal cortex. Neuropharmacology 67, 144-154. https://doi.org/10.1016/j.neuropharm.2012.10.020
- Chen, G., Liu, Z., Zhang, Y., Shan, X., Jiang, L., Zhao, Y., He, W., Feng, Z., Yang, S. and Liang, G. (2013) Synthesis and anti-inflammatory evaluation of novel benzimidazole and imidazopyridine derivatives. ACS Med. Chem. Lett. 4, 69-74. https://doi.org/10.1021/ml300282t
- da Silveira, F. P., Basso, C., Raupp, W., Dalpiaz, M., Bertoldi, K., Siqueira, I. R., Lago, P. D., de Souza, M. P. and Elsner, V. R. (2017) BDNF levels are increased in peripheral blood of middle-aged amateur runners with no changes on histone H4 acetylation levels. J. Physiol. Sci. 67, 681-687. https://doi.org/10.1007/s12576-016-0496-6
- Easmon, J., Puerstinger, G., Roth, T., Fiebig, H. H., Jenny, M., Jaeger, W., Heinisch, G. and Hofmann, J. (2001) 2-benzoxazolyl and 2-benzimidazolyl hydrazones derived from 2-acetylpyridine: a novel class of antitumor agents. Int. J. Cancer 94, 89-96. https://doi.org/10.1002/ijc.1427
- Eckroat, T. J., Mayhoub, A. S. and Garneau-Tsodikova, S. (2013) Amyloid-beta probes: review of structure-activity and brain-kinetics relationships. Beilstein J. Org. Chem. 9, 1012-1044. https://doi.org/10.3762/bjoc.9.116
- Ersche, K. D., Clark, L., London, M., Robbins, T. W. and Sahakian, B. J. (2006) Profile of executive and memory function associated with amphetamine and opiate dependence. Neuropsychopharmacology 31, 1036-1047. https://doi.org/10.1038/sj.npp.1300889
- Fernandes, S., Salta, S. and Summavielle, T. (2015) Methamphetamine promotes alpha-tubulin deacetylation in endothelial cells: the protective role of acetyl-l-carnitine. Toxicol. Lett. 234, 131-138. https://doi.org/10.1016/j.toxlet.2015.02.011
- Galinato, M. H., Orio, L. and Mandyam, C. D. (2015) Methamphetamine differentially affects BDNF and cell death factors in anatomically defined regions of the hippocampus. Neuroscience 286, 97-108. https://doi.org/10.1016/j.neuroscience.2014.11.042
- Go, B. S., Barry, S. M. and McGinty, J. F. (2016) Glutamatergic neurotransmission in the prefrontal cortex mediates the suppressive effect of intra-prelimbic cortical infusion of BDNF on cocaine-seeking. Eur. Neuropsychopharmacol. 26, 1989-1999. https://doi.org/10.1016/j.euroneuro.2016.10.002
- Grace, C. E., Schaefer, T. L., Herring, N. R., Skelton, M. R., McCrea, A. E., Vorhees, C. V. and Williams, M. T. (2008) (+)-Methamphetamine increases corticosterone in plasma and BDNF in brain more than forced swim or isolation in neonatal rats. Synapse 62, 110-121. https://doi.org/10.1002/syn.20470
- Halpin, L. E., Northrop, N. A. and Yamamoto, B. K. (2014) Ammonia mediates methamphetamine-induced increases in glutamate and excitotoxicity. Neuropsychopharmacology 39, 1031-1038. https://doi.org/10.1038/npp.2013.306
- Huo, X. L., Min, J. J., Pan, C. Y., Zhao, C. C., Pan, L. L., Gui, F. F., Jin, L. and Wang, X. T. (2014) Efficacy of lovastatin on learning and memory deficits caused by chronic intermittent hypoxia-hypercapnia: through regulation of NR2B-containing NMDA receptor-ERK pathway. PLoS ONE 9, e94278. https://doi.org/10.1371/journal.pone.0094278
- Jang, E. Y., Ryu, Y. H., Lee, B. H., Chang, S. C., Yeo, M. J., Kim, S. H., Folsom, R. J., Schilaty, N. D., Kim, K. J., Yang, C. H., Steffensen, S. C. and Kim, H. Y. (2015) Involvement of reactive oxygen species in cocaine-taking behaviors in rats. Addict. Biol. 20, 663-675. https://doi.org/10.1111/adb.12159
- Jayanthi, S., McCoy, M. T., Chen, B., Britt, J. P., Kourrich, S., Yau, H. J., Ladenheim, B., Krasnova, I. N., Bonci, A. and Cadet, J. L. (2014) Methamphetamine downregulates striatal glutamate receptors via diverse epigenetic mechanisms. Biol. Psychiatry 76, 47-56. https://doi.org/10.1016/j.biopsych.2013.09.034
- Jing, D., Lee, F. S. and Ninan, I. (2017) The BDNF Val66Met polymorphism enhances glutamatergic transmission but diminishes activity-dependent synaptic plasticity in the dorsolateral striatum. Neuropharmacology 112, 84-93. https://doi.org/10.1016/j.neuropharm.2016.06.030
- Kalda, A., Heidmets, L. T., Shen, H. Y., Zharkovsky, A. and Chen, J. F. (2007) Histone deacetylase inhibitors modulates the induction and expression of amphetamine-induced behavioral sensitization partially through an associated learning of the environment in mice. Behav. Brain Res. 181, 76-84. https://doi.org/10.1016/j.bbr.2007.03.027
- Kalivas, P. W. and Volkow, N. D. (2011) New medications for drug addiction hiding in glutamatergic neuroplasticity. Mol. Psychiatry 16, 974-986. https://doi.org/10.1038/mp.2011.46
- Kim, D. J., Roh, S., Kim, Y., Yoon, S. J., Lee, H. K., Han, C. S. and Kim, Y. K. (2005) High concentrations of plasma brain-derived neurotrophic factor in methamphetamine users. Neurosci. Lett. 388, 112-115. https://doi.org/10.1016/j.neulet.2005.06.042
- Krapivinsky, G., Krapivinsky, L., Manasian, Y., Ivanov, A., Tyzio, R., Pellegrino, C., Ben-Ari, Y., Clapham, D. E. and Medina, I. (2003) The NMDA receptor is coupled to the ERK pathway by a direct interaction between NR2B and RasGRF1. Neuron 40, 775-784. https://doi.org/10.1016/S0896-6273(03)00645-7
- Kuczenski, R., Everall, I. P., Crews, L., Adame, A., Grant, I. and Masliah, E. (2007) Escalating dose-multiple binge methamphetamine exposure results in degeneration of the neocortex and limbic system in the rat. Exp. Neurol. 207, 42-51. https://doi.org/10.1016/j.expneurol.2007.05.023
- Lazer, E. S., Matteo, M. R. and Possanza, G. J. (1987) Benzimidazole derivatives with atypical antiinflammatory activity. J. Med. Chem. 30, 726-729. https://doi.org/10.1021/jm00387a026
- Li, L., Liu, X., Qiao, C., Chen, G. and Li, T. (2016) Ifenprodil attenuates methamphetamine-induced behavioral sensitization and activation of Ras-ERK-FosB pathway in the caudate putamen. Neurochem. Res. 41, 2636-2644. https://doi.org/10.1007/s11064-016-1976-z
- Lin, S. Y., Wu, K., Levine, E. S., Mount, H. T., Suen, P. C. and Black, I. B. (1998) BDNF acutely increases tyrosine phosphorylation of the NMDA receptor subunit 2B in cortical and hippocampal postsynaptic densities. Brain Res. Mol. Brain Res. 55, 20-27. https://doi.org/10.1016/S0169-328X(97)00349-5
- Mishra, D., Pena-Bravo, J. I., Leong, K. C., Lavin, A. and Reichel, C. M. (2017) Methamphetamine self-administration modulates glutamate neurophysiology. Brain Struct. Funct. 222, 2031-2039. https://doi.org/10.1007/s00429-016-1322-x
- Mizoguchi, H., Yamada, K., Mizuno, M., Mizuno, T., Nitta, A., Noda, Y. and Nabeshima, T. (2004) Regulations of methamphetamine reward by extracellular signal-regulated kinase 1/2/ets-like gene-1 signaling pathway via the activation of dopamine receptors. Mol. Pharmacol. 65, 1293-1301. https://doi.org/10.1124/mol.65.5.1293
- Moriguchi, S., Watanabe, S., Kita, H. and Nakanishi, H. (2002) Enhancement of N-methyl- D-aspartate receptor-mediated excitatory postsynaptic potentials in the neostriatum after methamphetamine sensitization. An in vitro slice study. Exp. Brain Res. 144, 238-246. https://doi.org/10.1007/s00221-002-1039-3
- Nash, J. F. and Yamamoto, B. K. (1992) Methamphetamine neurotoxicity and striatal glutamate release: comparison to 3,4-methylenedioxymethamphetamine. Brain Res. 581, 237-243. https://doi.org/10.1016/0006-8993(92)90713-J
- Nestler, E. J. (2001) Molecular basis of long-term plasticity underlying addiction. Nat. Rev. Neurosci. 2, 119-128. https://doi.org/10.1038/35053570
- Pickens, C. L., Airavaara, M., Theberge, F., Fanous, S., Hope, B. T. and Shaham, Y. (2011) Neurobiology of the incubation of drug craving. Trends Neurosci. 34, 411-420. https://doi.org/10.1016/j.tins.2011.06.001
- Qi, J., Han, W. Y., Yang, J. Y., Wang, L. H., Dong, Y. X., Wang, F., Song, M. and Wu, C. F. (2012) Oxytocin regulates changes of extracellular glutamate and GABA levels induced by methamphetamine in the mouse brain. Addict. Biol. 17, 758-769. https://doi.org/10.1111/j.1369-1600.2012.00439.x
- Ricoy, U. M. and Martinez, J. L., Jr. (2009) Local hippocampal methamphetamine-induced reinforcement. Front. Behav. Neurosci. 3, 47. https://doi.org/10.3389/neuro.08.047.2009
- Rocher, C. and Gardier, A. M. (2001) Effects of repeated systemic administration of d-Fenfluramine on serotonin and glutamate release in rat ventral hippocampus: comparison with methamphetamine using in vivo microdialysis. Naunyn Schmiedebergs Arch. Pharmacol. 363, 422-428. https://doi.org/10.1007/s002100000381
- Rosenblum, K., Dudai, Y. and Richter-Levin, G. (1996) Long-term potentiation increases tyrosine phosphorylation of the N-methyl-D-aspartate receptor subunit 2B in rat dentate gyrus in vivo. Proc. Natl. Acad. Sci. U.S.A. 93, 10457-10460. https://doi.org/10.1073/pnas.93.19.10457
- Rostas, J. A., Brent, V. A., Voss, K., Errington, M. L., Bliss, T. V. and Gurd, J. W. (1996) Enhanced tyrosine phosphorylation of the 2B subunit of the N-methyl-D-aspartate receptor in long-term potentiation. Proc. Natl. Acad. Sci. U.S.A. 93, 10452-10456. https://doi.org/10.1073/pnas.93.19.10452
- Sakamoto, K., Karelina, K. and Obrietan, K. (2011) CREB: a multifaceted regulator of neuronal plasticity and protection. J. Neurochem. 116, 1-9. https://doi.org/10.1111/j.1471-4159.2010.07080.x
- Scott, J. C., Woods, S. P., Matt, G. E., Meyer, R. A., Heaton, R. K., Atkinson, J. H. and Grant, I. (2007) Neurocognitive effects of methamphetamine: a critical review and meta-analysis. Neuropsychol. Rev. 17, 275-297. https://doi.org/10.1007/s11065-007-9031-0
- Seto, E. and Yoshida, M. (2014) Erasers of histone acetylation: the histone deacetylase enzymes. Cold Spring Harb. Perspect. Biol. 6, a018713. https://doi.org/10.1101/cshperspect.a018713
- Simoes, P. F., Silva, A. P., Pereira, F. C., Marques, E., Milhazes, N., Borges, F., Ribeiro, C. F. and Macedo, T. R. (2008) Methamphetamine changes NMDA and AMPA glutamate receptor subunit levels in the rat striatum and frontal cortex. Ann. N. Y. Acad. Sci. 1139, 232-241. https://doi.org/10.1196/annals.1432.028
- Simon, S. L., Dacey, J., Glynn, S., Rawson, R. and Ling, W. (2004) The effect of relapse on cognition in abstinent methamphetamine abusers. J. Subst. Abuse Treat. 27, 59-66. https://doi.org/10.1016/j.jsat.2004.03.011
- Skelton, M. R., Williams, M. T., Schaefer, T. L. and Vorhees, C. V. (2007) Neonatal (+)-methamphetamine increases brain derived neurotrophic factor, but not nerve growth factor, during treatment and results in long-term spatial learning deficits. Psychoneuroendocrinology 32, 734-745. https://doi.org/10.1016/j.psyneuen.2007.05.004
- Stucky, A., Bakshi, K. P., Friedman, E. and Wang, H. Y. (2016) Prenatal cocaine exposure upregulates BDNF-TrkB signaling. PLoS ONE 11, e0160585. https://doi.org/10.1371/journal.pone.0160585
- Thomas, D. M., Walker, P. D., Benjamins, J. A., Geddes, T. J. and Kuhn, D. M. (2004) Methamphetamine neurotoxicity in dopamine nerve endings of the striatum is associated with microglial activation. J. Pharmacol. Exp. Ther. 311, 1-7. https://doi.org/10.1124/jpet.104.070961
- Torres, O. V., Ladenheim, B., Jayanthi, S., McCoy, M. T., Krasnova, I. N., Vautier, F. A. and Cadet, J. L. (2016) An acute methamphetamine injection downregulates the expression of several histone deacetylases (HDACs) in the mouse nucleus accumbens: potential regulatory role of HDAC2 expression. Neurotox. Res. 30, 32-40. https://doi.org/10.1007/s12640-015-9591-3
- Vecsey, C. G., Hawk, J. D., Lattal, K. M., Stein, J. M., Fabian, S. A., Attner, M. A., Cabrera, S. M., McDonough, C. B., Brindle, P. K., Abel, T. and Wood, M. A. (2007) Histone deacetylase inhibitors enhance memory and synaptic plasticity via CREB:CBP-dependent transcriptional activation. J. Neurosci. 27, 6128-6140. https://doi.org/10.1523/JNEUROSCI.0296-07.2007
- Walz, C., Jungling, K., Lessmann, V. and Gottmann, K. (2006) Presynaptic plasticity in an immature neocortical network requires NMDA receptor activation and BDNF release. J. Neurophysiol. 96, 3512-3516. https://doi.org/10.1152/jn.00018.2006
- Xing, A., Li, X., Jiang, C., Chen, Y., Wu, S., Zhang, J. and An, L. (2019) As a histone deacetylase inhibitor, gamma-aminobutyric acid upregulates GluR2 expression: an in vitro and in vivo study. Mol. Nutr. Food Res. 63, e1900001.
- Yeh, G. C., Chen, J. C., Tsai, H. C., Wu, H. H., Lin, C. Y., Hsu, P. C. and Peng, Y. C. (2002) Amphetamine inhibits the N-methyl-D-aspartate receptor-mediated responses by directly interacting with the receptor/channel complex. J. Pharmacol. Exp. Ther. 300, 1008-1016. https://doi.org/10.1124/jpet.300.3.1008
- Zhang, S., Jin, Y., Liu, X., Yang, L., Ge, Z., Wang, H., Li, J. and Zheng, J. (2014) Methamphetamine modulates glutamatergic synaptic transmission in rat primary cultured hippocampal neurons. Brain Res. 1582, 1-11. https://doi.org/10.1016/j.brainres.2014.07.040
Cited by
- Epigenetic Regulatory Dynamics in Models of Methamphetamine-Use Disorder vol.12, pp.10, 2021, https://doi.org/10.3390/genes12101614