DOI QR코드

DOI QR Code

Large-scale, Miocene Mud Intrusion into the Overlying Pleistocene Coastal Sediment, Pohang City, SE Korea: Deformation Mechanism, Trigger, and Paleo-seismological Implication for the 2017 Pohang Earthquakes

  • Gihm, Yong Sik (Department of Geology, School of Earth System Science, Kyungpook National University) ;
  • Ko, Kyoungtae (Geology Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Choi, Jin-Hyuk (Geology Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Choi, Sung-ja (Geology Division, Korea Institute of Geoscience and Mineral Resources)
  • 투고 : 2020.09.03
  • 심사 : 2020.10.16
  • 발행 : 2020.10.28

초록

포항지진은 포항지열발전소의 수리자극에 의한 촉발지진으로 조사되었으며, 수리자극을 위해 주입된 유체가 임계상태에 도달한 지하단층을 재활성시킨것으로 알려져 있다. 하지만 포항지열발전소의 건설 이전, 포항지진 진앙지 인근에서 단층운동에 의한 제4기층 변형연구는 보고되지 않았다. 포항지진 이후 지표지질조사를 통해 진앙지로부터 약 4km 떨어진 지점에서 대규모 물빠짐구조를 확인하였다. 마이오세 이암에에서 발생한 이 물빠짐 구조는 MIS 5에 형성된 상부 해안퇴적층을 관입하고 있다. 이는 마이오세 퇴적층과 해안퇴적층의 부정합면을 따라 존재하는 지하수면과 마이오세 퇴적층이 속성작용 완료되기 전에 융기된 영향으로 인해, 마이오세 퇴적층이 충분히 고화되지 않아 연질퇴적변형구조를 형성할 수 있었음을 지시한다. 이 물빠짐구조는 미고화된 이암의 공극수압이 상부지층의 하중을 초과하여 발생한 구조로서 지진에 의해 발생한 것으로 해석된다. 이러한 해석은 물빠짐구조로부터 약 400m 떨어진 지점에서 확인된 제4기 단층의 존재, 한반도 남동부의 빠른 융기율, 포항인근 양산단층을 따라 보고된 제4기 단층과 역사지진 기록과도 잘 부합한다. 따라서, 포항지진의 진앙지 일원은 제4기 동안 지구조운동과 이와 관련된 지표변형이 발생한 지점으로서 포항지진을 일으킨 단층 또한 지진발생 이전에 임계상태에 도달했을 것으로 추정된다.

The 2017 Pohang Earthquakes occurred near a drill site in the Pohang Enhanced Geothermal System. Water injected for well stimulation was believed to have reactivated the buried near-critically stressed Miocene faults by the accumulation of the Quaternary tectonic strain. However, surface expressions of the Quaternary tectonic activity had not been reported near the epicenter of the earthquakes before the site construction. Unusual, large-scale water-escaped structures were identified 4 km away from the epicenter during a post-seismic investigation. The water-escaped structures comprise Miocene mudstones injected into overlying Pleistocene coastal sediments that formed during Marine Isotope Stage 5. This indicates the vulnerable state of the mudstones long after deposition, resulted from the combined effects of rapid tectonic uplift (before significant diagenesis) and the development of an aquifer at their unconformable interface of the mudstone. Based on the detailed field analysis and consideration of all possible endogenic triggers, we interpreted the structures to have been formed by elevated pore pressures in the mudstones (thixotropy), triggered by cyclic ground motion during the earthquakes. This interpretation is strengthened by the presence of faults 400 m from the study area, which cut unconsolidated coastal sediment deposited after Marine Isotope Stage 5. Geological context, including high rates of tectonic uplift in SE Korea, paleo-seismological research on Quaternary faults near the study area, and historical records of paleoearthquakes in SE Korea, also support the interpretation. Thus, epicenter and surrounding areas of the 2017 Pohang Earthquake are considered as a paleoseismologically active area, and the causative fault of the 2017 Pohang Earthquakes was expected to be nearly critical state.

키워드

참고문헌

  1. Alfaro, P., Delgado, J., Estevez, A., Molina, J.M., Moretti, M. and Soria, J.M. (2002) Liquefaction and fluidization structures in Messinian storm deposits (Bajo Segura Basin, Betic Cordillera, southern Spain). International Journal of Earth Sciences, v.91, p.505-513. https://doi.org/10.1007/s00531-001-0241-z
  2. Allen, J.R.L. (1982) Sedimentary structures: their character and physical basis. Vol. II, Elsevier, Amsterdam, 663p.
  3. Bahk, J.J. and Chough, S.K. (1996) An interplay of synand intereruption depositional processes: the lower part of the Jangki Group (Miocene), SE Korea. Sedimentology, v.43, p.421-438. https://doi.org/10.1046/j.1365-3091.1996.d01-19.x
  4. Bonilla, M.G. (1988) Minimum earthquake magnitude associated with coseismic surface faulting: Bulletin of the Association of Engineering Geology, v.25, p.17-29.
  5. Cheon, Y., Son, M., Song, C.W., Kim, J.-S. and Sohn, Y.K. (2012) Geometry and kinematics of the Ocheon Fault System along the boundary between the Miocene Pohang and Janggi basins, SE Korea, and its tectonic implications. Geosciences Journal, v.16, p.253-273. https://doi.org/10.1007/s12303-012-0029-0
  6. Choi, S.J. (2019) Review on Marine Terraces of the East Sea Coast, South Korea : Gangreung - Busan. Economic and Environmental Geology, v.52, p.409-25. https://doi.org/10.9719/EEG.2019.52.5.409
  7. Choi, S.J., Merritts, D.J. and Ota, Y. (2008) Elevations and ages of marine terraces and late Quaternary rock uplift in southeastern Korea. Journal of Geophysical Research: Solid Earth, v.113, p.B10403. https://doi.org/10.1029/2007JB005260
  8. Choi, J.H., Kim, J.W., Murray, A.S., Hong, D.G., Chang, H.W. and Cheong, C.S. (2009) OSL dating of marine terrace sediments on the southern coast of Korea with implications for Quaternary tectonics. Quaternary International, v.199, p.3-14. https://doi.org/10.1016/j.quaint.2008.07.009
  9. Choi, J-H., Ko, K., Gihm, Y.S., Cho, C.S., Lee, H., Song, S. K., Bang, E, S., Lee, H-J., Bae, H.K., Kim, S.W., Choi, S-J., Lee, S.S. and Lee, S.R. (2019) Surface Deformations and Rupture Processes Associated with the 2017 Mw 5.4 Pohang, Korea, Earthquake. Bulletin of the Seismological Society of America, v.109, p.756-769.
  10. Choi, S.-J., Jeon, J.-S., Song, K.-Y., Kim, H.-C., Kim, Y.-H., Choi, P.-Y., Chwae, U.C., Han, J.-G., Ryoo, C.-R., Sun, C.-G., Jeon, M.S., Kim, G.-Y., Kim, Y.-B., Lee, H.-J., Shin, J.S., Lee, Y.-S. and Kee, W.-S. (2012) Active faults and seismic hazard map. National emergency Management Agency, Seoul, Korea, 882p.
  11. Duke, W.L., Arnott, R.W.C. and Cheel, R.J. (1991) Shelf sandstones and hummocky cross stratification: New insight on a stormy debate. Geology, v.19, p.625-628. https://doi.org/10.1130/0091-7613(1991)019<0625:SSAHCS>2.3.CO;2
  12. Dumas, S., Arnott, R.W.C. and Southard, J.B. (2005) Experiments on oscillatory-flow and combined flow bed forms: Implications for interpreting parts of the shallow marine rock record: Journal of Sedimentary Research, v.75, p.501-513. https://doi.org/10.2110/jsr.2005.039
  13. Galli, P. (2000) New empirical relationships between magnitude and distance for liquefaction. Tectonophysics, v.324, p.169-187. https://doi.org/10.1016/S0040-1951(00)00118-9
  14. Geological Society of Korea (2019) Summary report of the Korean Government Commission on relations between the 2017 Pohang earthquake and EGS project. Geological Society of Korea, Seoul, Korea, 346 p.
  15. Gihm, Y.S., Kim, S. W., Ko, K., Choi, J-H., Bae, H., Hong, P. S., Lee, Y., Lee, H., Jin, K., Choi, S-J., Kim, J.C., Choi, M. S. and Lee, S. R. (2018) Paleoseismological implications of liquefaction-induced structures caused by the 2017 Pohang Earthquake. Geoscience Journal, v.22, p.871-880. https://doi.org/10.1007/s12303-018-0051-y
  16. Grigoli, F., Cesca, S., Rinaldi, A.P., Manconi, A., Lopez- Comino, J.A., Clinton, J.F., Westaway, R., Cauzzi, C., Dahm, T. and Wiemer, S. (2018) The November 2017 Mw 5.5 Pohang earthquake: a possible case of induced seismicity in South Korea. Science, v.360, p.1003-1006. https://doi.org/10.1126/science.aat2010
  17. Hart, B. S. and Plint, A. G. (1995) Gravelly shoreface and beachface deposits, In Plint, A. G. (ed.), Clastic facies analysis. International Association of Sedimentologists Special Publication, v.22, p.75-99.
  18. Hansen, L., Eilertsen, R.S., Solberg, I.-L., Sveian, H. and Rokoengen, K. (2007) Facies characteristics, morphology and depositional models of clay-slide deposits in terraced fjord valleys, Norway. Sedimentary Geology, v.202, p.710-729. https://doi.org/10.1016/j.sedgeo.2007.08.004
  19. Hwang, I.G., Chough, S.K., Hong, S.W. and Choe, M.Y. (1995) Controls and evolution of fan delta systems in the Miocene Pohang Basin, SE Korea. Sedimentary Geology, v.98, p.147-179. https://doi.org/10.1016/0037-0738(95)00031-3
  20. Jeong, J.O., Kwon, C.W. and Sohn, Y.K. (2008) Lithofacies and architecture of a basinwide tuff unit in the Miocene Eoil Basin, SE Korea: modes of pyroclastic sedimentation, changes in eruption style, and implications for basin configuration. Geological Society of America Bulletin, v.120, p.1263-1279. https://doi.org/10.1130/B26077.1
  21. Jolivet, L., Fournier, M., Huchon, P., Rozhdestvenskiy, V.S., Sergeyev, K.F. and Oscorbin, L.S. (1992) Cenozoic intracontinental dextral motion in the Okhotsk-Japan Sea Region. Tectonics, v.11, p.968-977. https://doi.org/10.1029/92TC00337
  22. Kim, W.H. (1990) Significance of Early to Middle Miocene planktonic foraminiferal biostratigraphy of the E-core in the Pohang Basin, Korea. Journal of Paleontological Society of Korea, v.6, p.144-164.
  23. Kim, Y.S. and Jin, K. (2006) Estimated earthquake magnitude from the Yugye Fault displacement on a trench section in Pohang, SE Korea. Journal of the Geological Society of Korea, v.42, p.79-94 (in Korean with English abstract).
  24. Kim, J. and Paik, I.S. (2013) Chondrites from the Duho Formation (Miocene) in the Yeonil Group, Pohang Basin, Korea: Occurrences and paleoenvironmental implications. Journal of the Geological Society of Korea, v.49, p.407-416 (in Korean with English abstract).
  25. Kim, J.H., Nam, K.S. and Jeon, Y.S. (2017) Diversity of Miocene fossil Acer from the Pohang Basin, Korea. Journal of the Geological Society of Korea, v.53, p.387-405 (in Korean with English abstract). https://doi.org/10.14770/jgsk.2017.53.3.387
  26. Kim, S-H., Park, J-Y. and Lee, Y-N. (2018) A tooth of Cosmopolitodus hastalis (Elasmobranchii: Lamnidae) from the Duho Formation (Middle Miocene) of Pohangsi, Gyeongsangbuk-do, South Korea. Journal of the Geological Society of Korea, v.54, p.121-131 (in Korean with English abstract). https://doi.org/10.14770/jgsk.2018.54.2.121
  27. Kim, K.-H., Ree, J.-H., Kim, Y., Kim, S., Kang, S.Y. and Seo, W. (2018) Assessing whether the 2017 Mw 5.4 Pohang earthquake in South Korea was an induced event. Science, v.360, p.1007-1009. https://doi.org/10.1126/science.aat6081
  28. Kim, M-C., Jung, S., Yoon, S., Jeong, R-Y., Song, C, W. and Son, M. (2016) Neotectonic crustal deformation and current stress field in the korean peninsula and their tectonic implications: A review. Journal of Petrology of Korea, v.25, p.169-193 (in Korean with English abstract). https://doi.org/10.7854/JPSK.2016.25.3.169
  29. KMA, The wave records of the Pohang Buoy since 2010: https://data.kma.go.kr/data/sea/selectBuoyRltmList.do?pgmNo=52 (December, 2019).
  30. Lee, K. and Yang, W.S. (2006) Historical seismicity of Korea: Bulletin of the Seismological Society of America, v.96, p.846-855. https://doi.org/10.1785/0120050050
  31. Lee, K.-K., Ellsworth, W.L., Giardini, D., Townend, J., Ge, S., Shimamoto, T., Yeo, I.-W., Kang, T.-S., Rhie, J., Sheen, D.-H., Chang, C., Jeong-Ung, W. and Langenburch, C. (2019) Managing injection-induced seismic risks. Science, v.364, p.730-732. https://doi.org/10.1126/science.aax1878
  32. Leeder, M.R. (1987) Sediment deformation structures and the palaeotectonic analysis of sedimentary basins, with a case-study from the Carboniferous of northern England. In: Jones, M.E., Preston, R.M.F. (ed.), Deformation of Sediments and Sedimentary Rocks. Geological Society London, Special Publications, v.29, p.137-146. https://doi.org/10.1144/GSL.SP.1987.029.01.12
  33. Lim, J.D. (2005) The first dolphin fossil from the Miocene of Korea. Current Science, v.89, p.939-940.
  34. Maltman, A.J. and Bolton, A. (2003) How sediments become mobilized. In: Van Rensbergen, P., Hillis, R.R., Maltman, A.J. and Morley, C.K. (ed.), Subsurface sediment mobilization. Geological Society of London, Special Publications, v.216, p.9-20. https://doi.org/10.1144/GSL.SP.2003.216.01.02
  35. Massari, F. and Parea, G.C (1988) Progradational gravel beach sequences in a moderate- to high-energy, microtidal marine environment. Sedimentology, v.35, p.881-913. https://doi.org/10.1111/j.1365-3091.1988.tb01737.x
  36. Massari, F., Ghibaudo, G., D'Alessandro, A. and Davaud, E. (2001) Water-upwelling pipes and soft-sediment deformation structures in Lower Pleistocene calcarenites (Salento, southern Italy). Bulletin of the Geological Society of America, v.113, p.545-560. https://doi.org/10.1130/0016-7606(2001)113<0545:WUPASS>2.0.CO;2
  37. Obermeier, S.F. (1996) Use of liquefaction-induced features for paleoseismic analysis - an overview of how seismic liquefaction features can be distinguished from other features and how their regional distribution and properties of source sediment can be used to infer the location and strength of Holocene paleo-earthquakes. Engineering Geology, v.44, p.1-76. https://doi.org/10.1016/S0013-7952(96)00040-3
  38. Obermeier, S.F., Olson, S.M., Green, R.A. (2005) Field occurrences of liquefaction-induced features: a primer for engineering geologic analysis of paleoseismic shaking. Engineering Geology, v.76, p.206-234.
  39. Owen, G. (1987) Deformation processes in unconsolidated sands. In: Jones, M.E. and Preston, R.M.F. (ed.), Deformation of sediments and sedimentary rocks. Geological Society Special Publication, v.29, p.11-24. https://doi.org/10.1144/GSL.SP.1987.029.01.02
  40. Owen, G. (1996) Experimental soft-sediment deformation: structures formed by the liquefaction of unconsolidated sands and some ancient examples. Sedimentology, v.43, p.279-293. https://doi.org/10.1046/j.1365-3091.1996.d01-5.x
  41. Owen, G. (2003) Load structures: gravity-driven sediment mobilization in the shallow subsurface. In: Van Rensbergen, P., Hillis, R.R., Maltman, A.J., and Morley, C.K. (ed.), Subsurface Sediment Mobilization. Geological Society of London, Special Publications, v.216, p.21-34. https://doi.org/10.1144/GSL.SP.2003.216.01.03
  42. Owen, G., Moretti, M. and Alfaro, P. (2011) Recognising triggers for soft-sediment deformation: current understanding and future directions. Sedimentary Geology, v.235, p.133-140. https://doi.org/10.1016/j.sedgeo.2010.12.010
  43. Rossetti, D.F. (1999) Soft-sediment deformation structures in late Albian to Cenomanian deposits, Saõ Luís Basin, northern Brazil: evidence for palaeoseismicity. Sedimentology, v.46, p.1065-1081. https://doi.org/10.1046/j.1365-3091.1999.00265.x
  44. Sohn, Y.K. and Son, M. (2004) Synrift stratigraphic geometry in a transfer zone coarse-grained delta complex, Miocene Pohang Basin, SE Korea. Sedimentology, v.51, p.1387-1408. https://doi.org/10.1111/j.1365-3091.2004.00679.x
  45. Sohn, Y.K., Ki, J.S., Jung, S., Kim, M.-C., Cho, H. and Son, M. (2013) Synvolcanic and syntectonic sedimentation of the mixed volcaniclastic-epiclastic succession in the Miocene Janggi Basin, SE Korea. Sedimentary Geology, v.288, p.40-59. https://doi.org/10.1016/j.sedgeo.2013.01.002
  46. Son, M., Song, C.W., Kim, M.-C., Cheon, Y., Cho, H. and Sohn, Y.K. (2015) Miocene tectonic evolution of the basins and fault systems, SE Kora: Dextral, simple shear during the East Sea (Sea of Japan) opening. Journal of the Geological Society, v.172, p.664-680. https://doi.org/10.1144/jgs2014-079
  47. Song, C.W., Son, M., Sohn, Y.K., Han, R., Shinn, Y.J. and Kim, J.-C. (2015) A study on potential geologic facility sites for carbon dioxide storage in the Miocene Pohang Basin, SE Korea. Journal of the Geological Society of Korea, v.51, p.53-66 (in Korean with English abstract). https://doi.org/10.14770/jgsk.2015.51.1.53
  48. Toro, B. and Pratt, B.R. (2016) Sedimentary record of seismic events in the Eocene Green River Formation and its implications for regional tectonics on lake evolution (Bridger Basin, Wyoming). Sedimentary Geology, v.344, p.175-204. https://doi.org/10.1016/j.sedgeo.2016.02.003
  49. Tuttle, M.P., Schweig, E.S., Sims, J.D., Lafferty, R.H., Wolf, L.W. and Haynes, M.L. (2002) The earthquake potential of the New Madrid seismic zone: Bulletin of the Seismological Society of America, v.92, p.2080-2089. https://doi.org/10.1785/0120010227
  50. van Loon, A.J. (2009) Soft-sediment deformation structures in siliciclastic sediments: an overview. Geologos, v.15, p.3-55.
  51. Wells, D.L. and Coppersmith, K.J. (1994) New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bulletin of Seismological Society of America, v.84, p.974-1002.
  52. Yoon, S.H., Sohn, Y.K. and Chough, S.K. (2014) Tectonic, sedimentary, and volcanic evolution of a back-arc basin in the East Sea (Sea of Japan). Marine Geology, v.352, p.70-88. https://doi.org/10.1016/j.margeo.2014.03.004