DOI QR코드

DOI QR Code

플럭스미터와 단공희석시험을 이용한 카르스트 대수층 내 지하수 플럭스 측정 비교

Comparison between Passive Flux Meters and Borehole Dilution Tests to Estimate Groundwater Flux in a Karst Aquifer

  • 이주연 (부경대학교 지구환경시스템과학부) ;
  • 양민준 (부경대학교 지구환경과학과)
  • Lee, Juyeon (Division of Earth Environmental System Sciences, Pukyong National University) ;
  • Yang, Minjune (Department of Earth and Environmental Sciences, Pukyong National University)
  • 투고 : 2020.06.29
  • 심사 : 2020.10.15
  • 발행 : 2020.10.28

초록

본 연구는 플로리다 주 Silver Springs 유역 내 카르스트 대수층의 지하수 플럭스를 측정하기 위해 플럭스미터(passive flux meter)와 단공희석시험(borehole dilution test)을 수행하였다. 또한 카르스트 대수층 내 분포하는 두 영역인 암반 매질(matrix)과 균열암반 매질(non-matrix)에 따른 플럭스미터의 성능도 함께 평가하였다. 그 결과 유속이 낮은 암반 매질 영역에서는 플럭스미터의 측정값(5.96 ± 1.75 cm/day)이 단공희석시험의 측정값(4.68 ± 2.99 cm/day)과 유사하게 나타났다. 반면, 유속이 빠른 균열암반 매질 영역에서는 플럭스미터의 측정값(9.94 ± 0.90 cm/day)과 단공희석시험의 측정값(1817.37 ± 1795.50 cm/day)이 큰 차이를 보였다. 이와 같은 결과는 지하수가 플럭스미터 내부 흡착제를 완전히 통과한다고 가정하였으나, 빠른 지하수 플럭스(>11 cm/day)를 가진 균열암반 매질 영역의 경우 지하수가 플럭스미터의 활성탄 담체를 통과하지 못하고 플럭스미터와 관측공 사이의 공간으로 우회하여 흐르기 때문으로 판단된다. 따라서 기존의 플럭스미터는 11 cm/day 이하의 지하수 플럭스 측정에 적합하며, 지하수 플럭스가 11 cm/day 이상인 대수층에서 사용할 수 있는 새로운 플럭스미터의 개발이 필요할 것으로 생각된다.

In this study, we measured groundwater fluxes with a passive flux meter and a borehole dilution test in the Upper Floridan Aquifer. In addition, the feasibility of the passive flux meter is also evaluated within matrix and non-matrix zones. The results of the PFM (5.96 ± 1.75 cm/day) showed good agreement with those of the BHD (4.68 ± 2.99 cm/day) in matrix zones, whereas the results of the PFM (9.94 ± 0.90 cm/day) showed poor agreement with those of the BHD (1817.37 ± 1795.50 cm/day) in non-matrix zones. We assumed that the groundwater passes through the sorbent material inside the PFM. However, it could not pass through the sorbent when the groundwater flux is faster than 11 cm/day. The flow might bypass between monitoring well and the PFM. The PFM used in this study might be suitable for measuring the groundwater fluxes under 11 cm/day. Therefore, more extensive research is needed in the future to measure fast groundwater fluxes (> 11 cm/day).

키워드

참고문헌

  1. Annable, M.D., Hatfield, K., Cho, J., Klammler, H., Parker, B.L., Cherry, J.A. and Rao, P.S.C. (2005) Fieldscale evaluation of the passive flux meter for simultaneous measurement of groundwater and contaminant fluxes. Environ. Sci. Technol. https://doi.org/10.1021/es050074g
  2. Artiola, J., Pepper, I.L. and Brusseau, M.L. (2004) Environmental monitoring and characterization. Elsevier.
  3. Bakalowicz, M. (2005) Karst groundwater: A challenge for new resources. Hydrogeol. J. https://doi.org/10.1007/s10040-004-0402-9
  4. Bauer-Gottwein, P., Gondwe, B.R.N., Charvet, G., Marin, L.E., Rebolledo-Vieyra, M. and Merediz-Alonso, G. (2011) Review: The Yucatán Peninsula karst aquifer, Mexico. Hydrogeol. J., v.19, p.507-524. https://doi.org/10.1007/s10040-010-0699-5
  5. Bayani Cardenas, M. and Wilson, J.L. (2006) The influence of ambient groundwater discharge on exchange zones induced by current-bedform interactions. J. Hydrol. https://doi.org/10.1016/j.jhydrol.2006.05.012
  6. Berglund, J.L., Toran, L. and Herman, E.K. (2020) Can Karst Conduit Models Be Calibrated? A Dual Approach Using Dye Tracing and Temperature. Groundwater gwat.12988. https://doi.org/10.1111/gwat.12988
  7. Brouyere, S., Batlle-Aguilar, J., Goderniaux, P. and Dassargues, A. (2008) A new tracer technique for monitoring groundwater fluxes: The Finite Volume Point Dilution Method. J. Contam. Hydrol., https://doi.org/10.1016/j.jconhyd.2007.09.001
  8. Butler, Jr., J.J. (1997) The Design, Performance, and Analysis of Slug Tests, The Design, Performance, and Analysis of Slug Tests., https://doi.org/10.1201/9781482229370
  9. Chen, Z., Auler, A.S., Bakalowicz, M., Drew, D., Griger, F., Hartmann, J., Jiang, G., Moosdorf, N., Richts, A., Stevanovic, Z., Veni, G. and Goldscheider, N. (2017) The World Karst Aquifer Mapping project: concept, mapping procedure and map of Europe. Hydrogeol. J. https://doi.org/10.1007/s10040-016-1519-3
  10. Drost, W., Klotz, D., Koch, A., Moser, H., Neumaier, F. and Rauert, W. (1968) Point dilution methods of investigating ground water flow by means of radioisotopes. Water Resour. Res. https://doi.org/10.1029/WR004i001p00125
  11. Essouayed, E., Annable, M. D., Momtbrun, M. and Atteia, O. (2019) An innovative tool for groundwater velocity measurement compared with other tools in laboratory and field tests. J. Hydrol. X, 2, 100008. https://doi.org/10.1016/j.hydroa.2018.100008
  12. Florida Department of Environmental Protection (FDEP) October (2015) Basin management action plan for the Implementation of Total Maximum Daily Loads adopted by the Florida Department of Environmental Protection in the Silver Springs Basin Management Area for Silver Springs, Silver Springs Group, and Upper Silver River. Tallahassee, FL: Florida Department of Environmental Protection, Division of Environmental Assessment and Restoration. https://floridadep.gov/sites/default/files/SilverSprings-BMAP.pdf
  13. Florida Springs Institute (2014) Restoring Silver Springs: An Action Plan. https://floridaspringsinstitute.org/wpcontent/uploads/2018/07/Silver-Springs-Restoration-Plan-Executive-Summary.pdf (last access: April 2020)
  14. Ford, D.C. and Williams, P.W. (1989) Karst geomorphology and hydrology. Unwin Hyman London.
  15. Gunn, J., Hardwick, P. and Wood, P.J. (2000) The invertebrate community of the Peak-Speedwell cave system, Derbyshire, England - Pressures and considerations for conservation management. Aquat. Conserv. Mar. Freshw. Ecosyst. https://doi.org/10.1002/1099-0755(200009/10)10:5<353::AID-AQC413>3.0.CO;2-S
  16. Haitjema, H.M. and Anderson, M.P. (2016) Darcy Velocity Is Not a Velocity. Groundwater, v.54, p.1-1. https://doi.org/10.1111/gwat.12386
  17. Hartmann, A., Goldscheider, N., Wagener, T., Lange, J. and Weiler, M. (2013) Karst water resources in a changing world. Rev. Geophys., 2013, p.218-242. https://doi.org/10.1002/2013RG000443.Received
  18. Hatfield, K., Annable, M., Cho, J., Rao, P.S.C. and Klammler, H. (2004) A direct passive method for measuring water and contaminant fluxes in porous media. J. Contam. Hydrol. https://doi.org/10.1016/j.jconhyd.2004.06.005
  19. Hatfield, K., Rao, P.S.C., Annable, M.D. and Campbell, T.J. (2002) Device and method for measuring fluid and solute fluxes in flow systems.
  20. Kalbus, E., Reinstorf, F. and Schirmer, M. (2006) Measuring methods for groundwater - Surface water interactions: A review. Hydrol. Earth Syst. Sci. https://doi.org/10.5194/hess-10-873-2006
  21. Kaufmann, G. and Braun, J. (2000) Karst aquifer evolution in fractured, porous rocks. Water Resour. Res. https://doi.org/10.1029/1999WR900356
  22. Kemp, W.M. and Boynton, W.R. (2004) Productivity, trophic structure, and energy flow in the steady-state ecosystems of Silver Springs, Florida. Ecol. Modell. https://doi.org/10.1016/j.ecolmodel.2003.12.020
  23. Knowles, L., Katz, B.G. and Toth, D.J. (2010) Using multiple chemical indicators to characterize and determine the age of groundwater from selected vents of the silver springs group, Central Florida, USA. Hydrogeol. J. https://doi.org/10.1007/s10040-010-0669-y
  24. Kunz, J.V., Annable, M.D., Rao, S., Rode, M. and Borchardt, D. (2017) Hyporheic Passive Flux Meters Reveal Inverse Vertical Zonation and High Seasonality of Nitrogen Processing in an Anthropogenically Modified Stream (Holtemme, Germany). Water Resour. Res., v.53, p.10155-10172. https://doi.org/10.1002/2017WR020709
  25. Munch, D.A., Toth, D.J., Huang, C., Davis, J.B., Fortich, C.M., Osburn, W.L., Phlips, E.J., Quinlan, E.L., Allen, M.S., Woods, M.J., Cooney, P., Knight, R.L., Clarke, R.A. and Knight, S.L. (2006) Fifty-Year Retrospective Study of the Ecology of Silver Springs, Florida, Springs.
  26. Novakowski, K.S., Lapcevic, P.A., Voralek, J. and Bickerton, G. (1995) Preliminary interpretation of tracer experiments conducted in a discrete rock fracture under conditions of natural flow. Geophys. Res. Lett. https://doi.org/10.1029/95GL00569
  27. Odum, H.T. (1957) Trophic Structure and Productivity of Silver Springs, Florida. Ecol. Monogr. https://doi.org/10.2307/1948571
  28. Palmer, C. D. (1993) Borehole dilution tests in the vicinity of an extraction well. Journal of Hydrology, v.146, p.245-266, doi: 10.1016/0022-1694(93)90279-I
  29. Phelps, G.G. (2004) Chemistry of Ground Water in the Silver Springs Basin, Florida, with an emphasis on Nitrate.
  30. Pitrak, M., Mares, S. and Kobr, M. (2007) A simple borehole dilution technique in measuring horizontal ground water flow. Ground Water, v.45, p.89-92. https://doi.org/10.1111/j.1745-6584.2006.00258.x
  31. Shafer, J.M., Brantley, D.T. and Waddell, M.G. (2010) Variable-density flow and transport simulation of wellbore brine displacement. Ground Water. https://doi.org/10.1111/j.1745-6584.2009.00594.x
  32. Todd, D.K. and Mays, L.W. (2005) Groundwater Hydrology. 2nd (ed.) John Wiley, New York, 535pp.
  33. U.S. Environmental Protection Agency (2018) Comparative Evaluation of Contaminant Mass Flux and Groundwater Flux Measurements in Fractured Rock Using Passive Flux Meters. Washington, DC, EPA/600/R-17/459
  34. van Tonder, G., Riemann, K. and Dennis, I. (2002) Interpretation of single-well tracer tests using fractionalflow dimensions. Part 1: Theory and mathematical models. Hydrogeol. J. https://doi.org/10.1007/s10040-002-0198-4
  35. Verreydt, G., Bronders, J., Van Keer, I., Diels, L. and Vanderauwera, P. (2015) Groundwater Flow Field Distortion by Monitoring Wells and Passive Flux Meters. Groundwater, v.53, p.933-942. https://doi.org/10.1111/gwat.12290
  36. Worthington, S. and Ford, D. (1995, June) Borehole tests for megascale channeling in carbonate aquifers. In proceedings, XXVI Congress of the International Association of Hydrogeologists, Edmonton, Alberta.
  37. Yang, M., Yaquian, J.A., Annable, M.D. and Jawitz, J.W. (2019) Karst conduit contribution to spring discharge and aquifer cross-sectional area. J. Hydrol. https://doi.org/10.1016/j.jhydrol.2019.124037