레이더 강우 자료의 문제점과 해결방안

  • 윤정수 (한국건설기술연구원 돌발홍수연구센터) ;
  • 황석환 (한국건설기술연구원 돌발홍수연구센터) ;
  • 강나래 (한국건설기술연구원 돌발홍수연구센터)
  • Published : 2020.09.25

Abstract

Keywords

References

  1. Atlas, D. (2002). Radar calibration: Some simple approaches. Bulletin of the American Meteorological Society, Vol. 83, pp. 1313-1316. https://doi.org/10.1175/1520-0477-83.9.1313
  2. Aydin, K., Direskeneli, H., and Seliga, T.A. (1987). "Dual-Polarzation Radar Estimation of Rainfall Parameters Compared with Ground-Based Disdrometer Measurements: October 29, 1982 Central Illinois Expenment." IEEE Transactions on Geoscience and Remote Sensing, Vol. 25, No. 6, pp. 834-844.
  3. Aydin, K., Lure, Y.M., amd Seliga, T.A. (1990). "Compared with ground-based rain gauges during MAYPOLE'84." IEEE Transactions on Geoscience and Remote Sensing, Vol. 28, No. 4, pp. 443-449. https://doi.org/10.1109/TGRS.1990.572914
  4. Atlas, D., and Ludlam, F. H. (1961). "Multi-wavelength radar reflectivity of hailstorms." Quarterly Journal of the Royal Meteorological Society, Vol. 87, No. 374, pp. 523-534. https://doi.org/10.1002/qj.49708737407
  5. Austin, P.M. (1987). "Relation between measured radar reflectivity and surface rainfall." Monthly Weather Review, Vol. 115, No. 5, pp. 1053-1070. https://doi.org/10.1175/1520-0493(1987)115<1053:RBMRRA>2.0.CO;2
  6. Battan, L.J. (1973). Radar observation of the atmosphere, University of Chicago Press, 324pp.
  7. Chandrasekar, V., Bringi, V.N., Balakrishnan, V.N., and Zrnic, D.S. (1990). "Error structure of multiparameter radar and surface measurements of rainfall. Part III: Specific differential phase." Journal of Atmospheric and Oceanic Technology, Vol. 7, No. 5, pp. 621-629. https://doi.org/10.1175/1520-0426(1990)007<0621:ESOMRA>2.0.CO;2
  8. Eccles, P.J., and Atlas, D. (1973). "A dual-wavelength radar hail detector." Journal of Applied Meteorology, Vol. 12, No. 5, pp. 847-854. https://doi.org/10.1175/1520-0450(1973)012<0847:ADWRHD>2.0.CO;2
  9. Gosset, M., Zahiri, E.P. and Moumouni, S. (2010). Rain drop size distribution variability and impact on X-band polarimetric radar retrieval: Results from the AMMA campaign in Benin. Quarterly Journal of the Royal Meteorological Society, Vol. 136, pp. 243-256. https://doi.org/10.1002/qj.556
  10. Humphries, R.G. (1974). Depolarization effects at 3 GHz due to precipitation. Storm Weather Group Scientific Report MW-82, McGill University, Montreal, Quebec. 84pp.
  11. Jameson, A.R. (1985). "Microphysical interpretation of multiparameter radar measurements in rain. Part III: Interpretation and measurement of propagation differential phase shift between orthogonal linear polarizations." Jouranl of Atmospheric Sciences, Vol. 42, No. 6, pp. 607-614. https://doi.org/10.1175/1520-0469(1985)042<0607:MIOMRM>2.0.CO;2
  12. Kim, K., Choi, J. and Yoo, C. (2008). Synthesis of Radar Measurements and Ground Measurements using the Successive Correction Method(SCM). Journal of Korea Water Resources Association, Vol. 41, No. 7, pp. 681-692. https://doi.org/10.3741/JKWRA.2008.41.7.681
  13. Krajewski, W.F. (1987). Cokriging of radar-rainfall and rain gage data. Journal of Geophysical Research, Vol. 92, pp. 9571-9580. https://doi.org/10.1029/JD092iD08p09571
  14. Marshall, J.S., and Palmer, W.M. (1948). "The distribution of raindrops with size." Journal of Meteorology, Vol. 5, No. 4, pp. 165-166. https://doi.org/10.1175/1520-0469(1948)005<0165:TDORWS>2.0.CO;2
  15. Meteorological Research Institute (MRI). (2004). Development of METRI X-Band Doppler Weather Radar Operations and Radar Data Analysis Technique (IV). Seoul, Korea, p. 224.
  16. Ryzhkov, A.V., and Zrnic, D.S. (1995a). "Comparison of dual polarization radar estimators of rain." Journal of Amospheric and Oceanic Technology, Vol. 12, No. 2, pp. 249-256. https://doi.org/10.1175/1520-0426(1995)012<0249:CODPRE>2.0.CO;2
  17. Ryzhkov, A.V., and Zrnic, D.S. (1995b). "Precipitation and attenuation measurements at a 10-cm wavelength." Journal of Applied Meteorology, Vol. 34, No. 10, pp. 2121-2134. https://doi.org/10.1175/1520-0450(1995)034<2120:PAAMAA>2.0.CO;2
  18. Ryzhkov, A.V., and Zrnic, D.S. (1996). "Assessment of rainfall measurement that uses specific differential phase." Journal of Applied Meteorology, Vol. 35, No. 11, pp. 2080-2090. https://doi.org/10.1175/1520-0450(1996)035<2080:AORMTU>2.0.CO;2
  19. Sachidananda, M., and Zrnic, D.S. (1986). "Differential propagation phase shift and rainfall rate estimation." Radio Science, Vol. 21, No. 2, pp. 235-247. https://doi.org/10.1029/RS021i002p00235
  20. Seliga, T.A., Aydin, K., and Direskeneli, H. (1986). "Disdrometer Measurements during an Intense Rainfall Event in Central Illinois_Implications for Differential Reflectivity Radar Observations." Journal of Climate and Applied Meteorology, Vol. 25, No. 6, pp. 835-846. https://doi.org/10.1175/1520-0450(1986)025<0835:DMDAIR>2.0.CO;2
  21. Seliga, T.A., and Bringi, V.N. (1976). "Potential use of radar differential reflectivity measurements at orthogonal polarization for measureing precipitation." Journal of Applied Meteorology, Vol. 15, No. 1, pp. 69-76. https://doi.org/10.1175/1520-0450(1976)015<0069:PUORDR>2.0.CO;2
  22. Seo, B.C. and Krajewski, W.F. (2011). Investigation of the scale-dependent variability of radar-rainfall and rain gauge error covariance. Advances in Water Resources, Vol. 34, pp. 152-163. https://doi.org/10.1016/j.advwatres.2010.10.006
  23. Seo, D.J., Krajewski, W.F. and Bowles, D.S. (1990). Stochastic interpolation of rainfall data from rain gages and radar using cokriging: 1. Design of experiments. Water Resources Research, Vol. 26, pp. 469-477. https://doi.org/10.1029/WR026i003p00469
  24. Suk, M., Nam, K., Kim, Y. and Oh, S. (2005) Estimation of Quantitative Rain Intensity from Radar Reflectivities Using a Window Probability Matching Method. Asia-Pacific Journal of Atmospheric Sciences, Vol. 41, No. 1, pp. 123-138.
  25. Sulakvelidze, G.K. (1968). "Radar identification of hail." Proceedings 13th Radar Meteorology Conference, Montreal, American Meteorolgical Society.
  26. Weather Radar Center (WRC) (2015). Development and application of cross governmental dual-pol. radar harmoniziltion, Seoul, Korea.
  27. Yoon, J. (2018). Quantification of error in reflectivity for improving the accuracy of the radar rainfall estimated from single polarization radar. Journal of the Korean Society of Hazard Mitigation, Vol. 18, No. 5, pp. 255-263. https://doi.org/10.9798/KOSHAM.2018.18.5.255
  28. Yoon, J., Choi, J., Yoo, C. and Kim, K. (2016a). The runoff uncertainty caused by the mismatch between the radar rain rate and the topographical information data. KSCE Journal of Civil Engineering, Vol. 20, pp. 960-970. https://doi.org/10.1007/s12205-015-0247-x
  29. Yoon, J., Suk, M-K., Nam, K-Y. and Park, J-S. (2016b). Application of an empirical method to improve radar rainfall estimation using cross governmental dual-pol. radars. Journal of Korea water Resources Association, Vol. 49, No. 7, pp. 625-634. https://doi.org/10.3741/JKWRA.2016.49.7.625
  30. Yoon, J., Joo, J., Yoo, C., Hwang, S. and Lim, S. (2017). On quality of radar rainfall with respect to temporal and spatial resolution for application to urban area. Meteorological Applications, Vol. 24, pp. 19-30. https://doi.org/10.1002/met.1601
  31. Zrnic. D.S., and Ryzhkov, A.V. (1999). "Polarimetry for weather surveillance radars." Bulletin of the American. Meteorological Society, Vol. 80, No. 3, pp. 389-406. https://doi.org/10.1175/1520-0477(1999)080<0389:PFWSR>2.0.CO;2