DOI QR코드

DOI QR Code

여원 MLCA와 특수 혼돈 함수를 이용한 영상 암호화 기법

Image Encryption Scheme using Complemented MLCA and Special Chaos Map

  • 정현수 (부경대학교 정보통신공학과) ;
  • 박규칠 (부경대학교 정보통신공학과) ;
  • 조성진 (부경대학교 응용수학과) ;
  • 김석태 (부경대학교 정보통신공학과)
  • 투고 : 2020.08.21
  • 심사 : 2020.10.15
  • 발행 : 2020.10.31

초록

본 논문에서는 영상의 픽셀 고유의 값을 변환하고 위치를 섞는 높은 보안성을 지닌 암호화 알고리즘을 제안한다. Wolfram 규칙으로 생성된 상태 전이 행렬로 최대 길이를 가지는 여원 CA 수열을 만든다. 이를 2차원 기저 영상으로 변환하여 원 영상과 XOR 연산을 한 후, 층밀리기 변형 및 재배열 과정을 통하여 암호화된 영상을 만든다. 영상의 안정성 분석을 통하여 제안하는 암호화 기법이 높은 보안성을 가졌음을 검증한다.

The proposed encryption algorithm strengthens its security by converting pixel-specific values and changing pixel positions. The state transition matrix created by Wolfram's rule creates a complemented CA sequence with the maximum length. Then, we convert the sequence into a 2D basis image and go through a XOR operation with the original image. The final encrypted image is created by shear stressing and rearranging. The image stability analysis verified that the proposed encryption method has high security.

키워드

참고문헌

  1. H. Kim, "A Study on Cloud-Based Secure File Management Security Solutions According to Information Protection Needs," J. of the Korea Institute of Electronic Communication Sciences, vol. 14, no. 1, Feb. 2019, pp. 243-250. https://doi.org/10.13067/JKIECS.2019.14.1.243
  2. W. Jeong and S. Lee, "A study on Twofish Cryptoalgorithm Design for Security in the PC Peripheral devices," J. of the Korea Institute of Electronic Communication Sciences, vol. 2, no. 2, June 2019, pp. 118-122.
  3. Y. Dai and X. Wang, "Medical image encryption based on composition of Logistic Maps and Chebyshev Maps," Proc. IEEE Int. Conf. Information and Automation, Shenyang, China, June 2012, pp. 210-214.
  4. S. Xu, Y. Wang, J. Wang, and M. Tian, "Cryptanalysis of Two Chaotic Image Encryption Schemes Based on Permutation and XOR Operations," Int. Conf. on Computational Intelligence and Security, Suzhou, China, Dec. 2008, pp. 433-437.
  5. H. Jeong, S. Cho, K. Park, and S. Tim, "Medical Image Encryption based on C-MLCA and 1D CAT," J. of the Korea Institute of Electronic Communication Sciences, vol. 14, no. 2, Mar. 2019, pp. 439-446. https://doi.org/10.13067/JKIECS.2019.14.2.439
  6. H. Jeong, S. Cho, K. Park, and S. Kim, "Color Medical Image Encryption Using Two-dimensional Chaotic Map and C-MLCA," The 11th Int. Conf. on Ubiquitous and Future Networks, Prague, Czech Republic, July 2018, pp. 801-804.
  7. Z. Guan, F. Huang, and W. Guan, "Chaos-based image encryption algorithm," Phys. Lett. A, vol. 346, no. 1, 2005, pp. 153-157. https://doi.org/10.1016/j.physleta.2005.08.006
  8. G. Peterson, "Arnold's Cat Map," Math 45-Linear Algebra, 1997, pp. 1-7.
  9. S. Wolfram, "Statistical mechanics of cellular automata," Rev. Modern Physics, vol. 55, no. 3, July 1983, pp. 601-644. https://doi.org/10.1103/RevModPhys.55.601
  10. S. Cho, U. Choi, H. Kim, Y. Hwang, J. Kim, and S. Heo, "New synthesis of one-dimensional 90/150 linear hybrid group cellular automata," IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems, vol. 26, no. 9, Sept. 2007, pp. 1720-1724. https://doi.org/10.1109/TCAD.2007.895784
  11. G. Sathishkumar and K. Bagan, "A novel image encryption algorithm using pixel shuffling and Base-64 encoding based chaotic block cipher," WSEAS Transactions on Computers, vol. 10, issue 6, June 2011, pp. 169-178.
  12. U. Choi, S. Cho, H. Kim, and S. Kang, "Image Encryption using Shrinking Generator based on CA," J. of the Korea Institute of Electronic Communication Sciences, vol. 15, no. 1, Feb. 2020, pp. 179-184. https://doi.org/10.13067/JKIECS.2020.15.1.179
  13. Z. Lin and H. Wang, "Efficient image encryption using a chaos-based PWL memristor," IETE Technical Review, vol. 27, issue 4, July 2010, pp. 318-325. https://doi.org/10.4103/0256-4602.64605
  14. H. Liu and A. Kadir, "Asymmetric color image encryption scheme using 2D discrete-time map," Signal Process, vol. 113, Aug. 2015, pp. 104-112. https://doi.org/10.1016/j.sigpro.2015.01.016
  15. X. Wang, Y. Zhao, H. Zhang, and K. Guo, "A novel color image encryption scheme using alternate chaotic mapping structure," Opt. Laser Eng., vol. 82, July 2016, pp. 79-86. https://doi.org/10.1016/j.optlaseng.2015.12.006
  16. S. Thangavel and R. Venkatesan, "A New Image Encryption Method Based on Knight's Travel Path and True Random Number," J. of Information Science and Engineering, 32(1), Jan. 2016, pp. 133-152.
  17. Y. Wu, J. P. Noonan, and S. Agaian, "NPCR and UACI randomness tests for image encryption," J. of Selected Areas in Telecommunications, 2. Apr. 2011, pp. 31-38.
  18. K. Loukhaoukha, J. Chouinard, and A. Berdai, "A secure image encryption algorithm based on Rubik's cube principle," J. of Electrical and Computer Engineering, vol. 2012, no.7 , Jan. 2012, pp. 1-13.
  19. L. Zhang, X. Liao, and X. Wang, "An Image Encryption Approach based on chaotic maps," Chaos, Solitons and Fractals, vol. 24, issue 3, 2005, pp. 759-765. https://doi.org/10.1016/j.chaos.2004.09.035
  20. Q. Zhou, K. Wong, X. Liao, T. Xiang, and Y. Hu, "Parallel Image Encryption Algorithm based on discretized chaotic map," Chaos, Solitons and Fractals, vol. 38, issue 4, 2008, pp. 1081-1092. https://doi.org/10.1016/j.chaos.2007.01.034