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Abstract. A uniformly convergent numerical method is developed for solving singularly

perturbed 1-D parabolic convection-diffusion problems. The developed method applies

a non-standard finite difference method for the spatial derivative discretization and uses

the implicit Runge-Kutta method for the semi-discrete scheme. The convergence of the

method is analyzed, and it is shown to be first order convergent. To validate the applica-

bility of the proposed method two model examples are considered and solved for different

perturbation parameters and mesh sizes. The numerical and experimental results agree

well with the theoretical findings.

1. Introduction

The convection-diffusion-reaction equation is consists of three processes [19].
The first process is convection and is due to the movement of materials from one
region to another. The second process is diffusion and is due to the movement of
materials from a region of high concentration to a region of low concentration. The
third process is reaction and is due to the decay, absorption and reaction of sub-
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stances with other components. The convection-diffusion-reaction PDE provides a
very useful and important mathematical model in a wide range of applications in
sciences and engineering. Applications include the water quality problem in river
networks [11], simulation of oil extraction from under-ground reservoirs [9], convec-
tive heat transport problems with large Peclet numbers [8], electromagnetic field
problems in moving media [13], financial modeling of option pricing [2], turbulence
models [16], drift diffusion equations of semiconductor device modeling [23], at-
mospheric pollution [24], fluid flow with high Reynolds numbers [20] and ground
water transport [1]. In many of these applications, the unknown variables in the
governing PDEs represent physical quantities that cannot take negative values such
as pollutants, population, and concentration of chemical compounds [3].

Differential equations whose highest order derivative(s) is multiplied by a small
perturbation parameter ε, 0 < ε � 1 are called singularly perturbed differential
equations [21]. Solutions of singularly perturbed problems, unlike regular problems,
have a boundary and/or interior layers. The boundary layer is a narrow sub-domain
specified by the parameter on which the solution varies by a finite value. The
derivatives of the solution in this sub-domain grow without bound as ε tends to
zero.

In the case of singularly perturbed problems, the use of numerical methods
developed for solving regular problems leads to errors in the solution that depend
on the value of the parameter ε. Errors of the numerical solution depend on the
distribution of mesh points and become small only when the effective mesh-size in
the layer is much less than the value of the parameter ε [18]. Such numerical methods
turn out to be inapplicable for singularly perturbed problems. Because of this, there
is an interest in the development of numerical methods where solution errors are
independent of the parameter or that converge ε-uniformly. When the solutions
of a PDE are ε-uniformly convergent, the methods and solutions are called robust
[10]. Some ε-uniform numerical schemes developed for the considered problem can
be found in [4, 5, 6, 12, 14, 28].

It is well known that classical numerical methods for solving singular perturba-
tion problems are unstable and fail to give accurate results when the perturbation
parameter ε is small. The accuracy and convergence of the methods need atten-
tion, because the treatment of singular perturbation problems is not trivial, and
the solution depends on perturbation parameter and mesh size h [7]. This suggests
that numerical treatment of singularly perturbed 1-D parabolic convection-diffusion
problems should be improved. The presence of the singular perturbation param-
eter ε, leads to oscillations or divergence in the computed solutions while using
classical numerical methods. To avoid these oscillations or divergence, an unac-
ceptably large number of mesh points are required when ε is very small, which is
not practical. So, to overcome this drawback associated with classical numerical
methods, we develop a method based on the method of line (MOL) using a non-
standard finite difference method in a spatial direction together with an implicit
Runge-Kutta method of order two and three in the temporal direction, which treat
the problem without creating an oscillation. Thus, this paper presents an accurate
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and ε-uniformly convergent numerical method for solving singular perturbation 1-D
parabolic convection-diffusion problem.

The paper is organized as follows. In Section 1 a brief introduction about the
problem is given, in Section 2 the definition of the problem and the behavior of its
analytical solution is given. In Section 3, the discretization of the spatial domain
and techniques of non-standard finite differences are discussed, and the ε-uniform
convergence of the semi-discrete problem is proved. Next, the Runge-Kutta method
is used for the system of IVPs resulting from the spatial discretization and the
convergence of the discrete scheme is discussed. In Section 4, numerical examples
and results are given to validate the theoretical analysis and finally in Section 5,
the conclusion of the work done is given.

Notation: Throughout this paper M and K denote the number of mesh points
in the space and time directions respectively. The symbol C is a positive con-
stant independent of the perturbation parameter and mesh parameters M and
K. The norms ‖.‖ and ‖.‖ΩM×QK are used to denote maximum norms defined
as ‖g‖ = maxx,t|g(x, t)|, (x, t) ∈ D and ‖gi,j‖ΩM×QK = maxi,j |g(xi, tj)|, 0 ≤ i ≤
M, 0 ≤ j ≤ K.

2. Statement of the Problem

A singularly perturbed 1-D parabolic convection-diffusion problem on the do-
main D = Ωx ×Q = (0, 1)× (0, T ] is given by:

(2.1)


∂u
∂t − ε

∂2u
∂x2 + a(x)∂u∂x + b(x)u(x, t) = f(x, t),

u(0, t) = µ0(t), t ∈ [0, T ];
u(1, t) = µ1(t), t ∈ [0, T ];
u(x, 0) = φ(x), x ∈ [0, 1],

where ε is the perturbation parameter such that 0 < ε� 1, the coefficient functions
a(x), b(x) and the source function f(x, t) are assumed sufficiently smooth. This
condition guarantees the existence of a unique solution for the problem in Eq.(2.1).

In this paper, we assume the case a(x) ≥ α > 0 and b(x) ≥ β > 0 which enables
the existence of the boundary layer on the right side of the domain.

2.1. Properties of Analytical Solution

Next, we see some of the properties of analytical solutions to the problem.
Let u0(x) ∈ C2[0, 1] and µ0, µ1 ∈ C1[0, T ]. Impose the compatibility conditions

u0(0) = µ0(0), u0(1) = µ0(1) and

∂µ0(0)

∂t
− ε∂

2u0(0)

∂x2
+ a(0)

∂u0(0)

∂x
+ b(0)u0(0) = f(0, 0),

∂µ1(0)

∂t
− ε∂

2u0(1)

∂x2
+ a(1)

∂u0(1)

∂x
+ b(1)u0(1) = f(1, 0),

so that the data matches at the two corners points (0, 0) and (1, 0).
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Let a(x), b(x) and f(x, t) be continuous functions on the domain D = Ω × Q.
Then Eq.(2.1) has unique solution u(x, t) ∈ C2(D) [25].

Since we considered a right boundary layer problem using compatibility con-
ditions, we deduce that there exists a constant C independent of ε such that
∀(x, t) ∈ D̄ = [0, 1] × [0, T ], we have the following conditions that guarantee the
existence of a constant C independent of ε such that ∀(x, t) ∈ D̄ given as:

|u(x, t)− u0(x)| ≤ Ct and

|u(x, t)− µ1(t)| ≤ C(1− x).

For details, the interested reader can refer to page 105 of [25].
To show the bounds of the solution u(x, t) of Eq.(2.1), without loss of generality

we assume the initial condition to be zero. Since u0(x) is sufficiently smooth, using
the property of the norm we can prove the following lemma.

Lemma 2.1. The bound on the solution u(x, t) of the continuous problem Eq.(2.1)
is given by

|u(x, t)| ≤ C, ∀(x, t) ∈ D̄.

Proof. From inequality |u(x, t)− u(x, 0)| − |u(x, t)− u0(x)| ≤ Ct, we have

|u(x, t)| − |u0(x)| ≤ |u(x, t)− u(x, 0)| ≤ Ct.

⇒ |u(x, t)| ≤ Ct+ |u0(x)|,∀(x, t) ∈ D̄.

Since t ∈ [0, T ] and u0(x) is bounded it implies |u(x, t)| ≤ C. 2

Lemma 2.2.(Continuous maximum principle) Let ψ ∈ C2,1(D̄) be such that

ψ ≥ 0,∀(x, t) ∈ ∂D. Then for the differential operator L = ∂
∂t−ε

∂2

∂x2 +a(x) ∂
∂x+b(x),

Lψ(x, t) > 0,∀(x, t) ∈ D implies that ψ(x, t) ≥ 0,∀(x, t) ∈ D̄.

Proof. Let (x∗, t∗) be such that ψ(x∗, t∗) = min(x,t)∈D̄ ψ(x, t) and suppose that
ψ(x∗, t∗) < 0. It is clear that (x∗, t∗) /∈ ∂D. So we have

Lψ(x∗, t∗) = ψt(x
∗, t∗)− εψxx(x∗, t∗) + a(x)ψx(x∗, t∗) + b(x)ψ(x∗, t∗).

Since
ψ(x∗, t∗) = min

(x,t)∈D̄
ψ(x, t),

which implies ψx(x∗, t∗) = 0, ψt(x
∗, t∗) = 0 and ψxx(x∗, t∗) ≥ 0 we get

Lψ(x∗, t∗) < 0 which contradicts the assumption made above. So we have
Lψ(x∗, t∗) > 0,∀(x, t) ∈ D. Hence ψ(x, t) ≥ 0,∀(x, t) ∈ D̄. 2

Lemma 2.3.(Stability estimate) Let u(x, t) be the solution of problem in
Eq.(2.1). Then we have the bound

|u(x, t)| ≤ β−1||f ||+ max{u0(x), µ0(t), µ1(t)},

where ‖f‖ = maxx,t∈D|f(x, t)|.



Uniformly Convergent Numerical Method for SPCDPs 633

Proof. Define barrier functions ϑ±(x, t) as

ϑ±(x, t) = β−1||f ||+ max{u0(x), µ0(t), µ1(t)} ± u(x, t).

At the initial value:

ϑ±(x, 0) = β−1||f ||+ max{u0(x), µ0(0), µ1(0)} ± u(x, 0) ≥ 0.

At the boundary points:

ϑ±(0, t) = β−1||f ||+ max{u0(0), µ0(t), µ1(t)} ± u(0, t) ≥ 0.

ϑ±(1, t) = β−1||f ||+ max{u0(1), µ0(t), µ1(t)} ± u(1, t) ≥ 0.

For the differential operator:

Lϑ±(x, t) =ϑ±t (x, t)− εϑ±xx(x, t) + a(x)ϑ±x (x, t) + b(x)ϑ±(x, t)

=(max{µ0t(t), u0t(x), µ1t(t)} ± ut(x, t))
− ε(max{µ0xx(t), u0xx(x), µ1xx(t)} ± uxx(x, t))

+ a(x)
(

max{u0x(t), µ0x(x), µ1x(t)} ± ux(x, t)
)

+ b(x)
(
β−1||f ||+ max{u0(x), µ0(t), µ1(t)} ± u(x, t)

)
≥0, since ε ≥ 0, a(x) ≥ α > 0, and b(x) ≥ β > 0,

which implies that Lϑ±(x, t) ≥ 0,∀(x, t) ∈ D. Hence by maximum principle we
have,

ϑ±(x, t) ≥ 0, ∀(x, t) ∈ D̄.
⇒|u(x, t)|≤ β−1||f ||+ max{u0(x), µ0(t), µ1(t)}.

Hence, the proof is completed. 2

Lemma 2.4. The bound on the derivative of the solution u(x, t) of Eq.(2.1) with
respect to x is given by∣∣∣∣∂iu(x, t)

∂xi

∣∣∣∣ ≤ C(1 + ε−ie−
α(1−x)

ε

)
, (x, t) ∈ D̄, i = 0(1)4.

Proof. Interested reader can see the proof on [5]. 2

3. Formulation of Numerical Scheme

3.1. Discretization in Spatial Direction

On the spatial domain [0, 1], we introduce uniform mesh with mesh length
∆x = h such that ΩMx = {xi}Mi=0, x0 = 0, xM = 1, h = 1/M where M is the number
of mesh points in the spatial discretization. For a problem in the form of Eq.(2.1),
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we consider the sub-equation obtained by neglecting the variable t. Following the
non-standard finite difference formulation boundary value problems in [17] and [22]
we get

(3.1) −εd
2u

dx2
+ a(x)

du

dx
= 0.

First we rewrite Eq.(3.1) equivalently as a system of coupled first order differential
equations:

(3.2)
du

dx
= y;

(3.3)
dy

dx
=
a(x)

ε
y.

Solving Eq.(3.3) we obtain y = exp
(a(x)

ε x
)

in the discrete form: yi = exp
(a(xi)

ε xi
)
.

To get the discrete difference scheme for y, we approximate Eq.(3.2) as

(3.4) yi =
Ui+1 − Ui

h
, i = 0(1)M − 1,

where Ui is denoted for the approximation of u(x) at grid point xi while using the
spatial discretization points.
Using the upwind finite difference for the first derivative, we obtain the scheme as

(3.5) −εUi+1 − 2Ui + Ui−1

ρ2
i

+ a(xi)
Ui − Ui−1

h
= 0, i = 1(1)M − 1.

Now combining the Eqs.(3.3), (3.4) and (3.5) we solve for ρ2
i . We obtain the de-

nominator function as:

ρ2
i =

hε

a(xi)

(
exp

(ha(xi)

ε

)
− 1
)
, i = 1(1)M − 1.

Using ρ2
i and Eq.(3.5) into the discretization of the main equation in Eq.(2.1), we

obtain

dU

dt
(xi, t)−ε

Ui+1(t)− 2Ui(t) + Ui−1(t)

ρ2
i

+ a(xi)
Ui(t)− Ui−1(t)

h

+ b(xi)Ui(t) = f(xi, t).

In this discretization Eq.(2.1) reduces to semi-discrete form as:

(3.6)


LhUi(t) = dUi(t)

dt − εUi+1(t)−2Ui(t)+Ui−1(t)
ρ2i

+ a(xi)
Ui(t)−Ui−1(t)

h

+b(xi)Ui(t) = fi(t), i = 1(1)M − 1, t ∈ (0, T ];
Ui(0) = φ(xi), i = 0(1)M,
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where U0(t) = µ0(t), UM (t) = µ1(t), t ∈ [0, T ] and Lh is a difference operator.
The system of IVP in Eq.(3.6) can be written in compact form as:

(3.7)

{
dUi(t)
dt +AUi(t) = Fi(t), i = 1(1)M − 1, t ∈ (0, T ];

Ui(0) = φ(xi), i = 0(1)M,

where A is a tridiagonal coefficient matrix of size M − 1 ×M − 1 and Ui(t) and
Fi(t) are M − 1 size column vectors. The entries of A and F are given as:

(3.8)


Ai,i = 2ε

ρ2i
+ a(xi)

h + b(xi), i = 1(1)M − 1,

Ai,i+1 = −ε
ρ2i
, i = 1(1)M − 2,

Ai,i−1 = −ε
ρ2i
− a(xi)

h , i = 2(1)M − 1,

and

(3.9)


F1(t) = f1(t) + ( ερ2 + a(x1)

h )µ0(t),

Fi(t) = fi(t), i = 2(1)M − 2,
FM−1(t) = fM−1(t) + ( ε

ρ2M−1
)µ1(t)

respectively.
Now we need to show the semi-discrete operator Lh also satisfies the maximum

principle and the uniform stability estimate.

Lemma 3.1.(Semi-discrete maximum principle) The operator defined by the
discrete scheme in Eq.(3.6) satisfies a semi-discrete maximum principle. That is,
Suppose U0(t) ≥ 0, UM (t) ≥ 0. Then LhUi(t) ≥ 0,∀i = 1(1)M − 1 implies that
Ui(t) ≥ 0,∀i = 0(1)M .

Proof. Suppose there exists s ∈ 0, 1, 2, ...M such that Us(t) = min0≤i≤M Ui(t).
Suppose that Us(t) < 0 which implies s 6= 0,M . We have Us+1 − Us > 0 and
Us − Us−1 < 0. We also have

LhUs(t) =
dUs(t)

dt
− εUs+1(t)− 2Us(t) + Us−1(t)

ρ2
s

+ as
Us(t)− Us−1(t)

h

+ bsUs(t) < 0.

Using the assumption, we get LhUi(t) < 0 for i = 1(1)M − 1. Thus the supposition
Ui(t) < 0, i = 1(1)M − 1 is wrong. Hence Ui(t) ≥ 0,∀i = 0(1)M . 2

Lemma 3.2. The solution Ui(t) of the semi-discrete problem in Eq.(3.6) satisfies
the following bound.

|Ui(t)| ≤ β−1 max |LhUi(t)|+ max
{
u0(xi), µ0(t), µ1(t)

}
.

Proof. Let q = β−1 max |LhUi(t)|+max
{
u0(xi), µ0(t), µ1(t)

}
and define the barrier

function Ψ±i (t) by: Ψ±i (t) = q ± Ui(t).
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At the boundary points we have

Ψ±0 (t) =q ± U0(t) = β−1 max |LhUi(t)|+ max
{
u0(x0), µ0(t), µ1(t)

}
± µ0(t) ≥ 0.

Ψ±M (t) =q ± UM (t) = β−1 max |LhUi(t)|+ max
{
u0(xM ), µ0(t), µ1(t)

}
± µ1(t) ≥ 0.

On the discretized domain 0 < i < M, we have

LhΨ±i (t) =
d(q ± Ui(t))

dt
− ε(q ± Ui+1(t)− 2(q ± Ui(t)) + q ± Ui−1(t)

ρ2
i

)

+ ai(
q ± Ui(t)− q ± Ui−1(t)

h
) + bi(q ± Ui(t))

= biq ± LhUi(t)
= bi(β

−1 max |LhUi(t)|+ max
{
u0(xi), µ0(t), µ1(t)

}
± fi(t))

≥ 0, since bi ≥ β.

From Lemma 3.1, using the semi-discrete maximum principle, we obtain

Ψ±i (t) ≥ 0, ∀(xi, t) ∈ Ω̄M ×Q. 2

3.2. Convergence Analysis for Semi-discrete Scheme

In the above two lemmas we proved that the semi-discrete operator Lh satisfyies
the maximum principle and the uniform stability estimate. In the next theorems
we prove the ε-uniform convergence of the spatial discretization.

Theorem 3.1. Suppose the coefficients functions a(x), b(x) and the source func-
tion f(x, t) in Eq.(2.1) are sufficiently smooth, so that u(x, t) ∈ C4([0, 1] × [0, T ]).
Then the difference of the solution u(x, t) and the semi-discrete solution Ui(t) of
the Eq.(2.1) satisfies the following bound.

(3.10) |Lh(u(xi, t)− Ui(t))| ≤ Ch
(

1 + sup
0≤i≤M

exp(−α(1− xi)/ε)
ε3

)
Proof. By considering the truncation error in spatial discretization we get:∣∣Lh(u(xi, t)− Ui(t))

∣∣ =
∣∣Lhu(xi, t)− LhUi(t)

∣∣
≤ Cε

∣∣∣∣ ∂2

∂x2
u(xi, t)−

D+
xD
−
x h

2

ρ2
i

u(xi, t)

∣∣∣∣
+

∣∣∣∣ai ∂∂xu(xi, t)−D−x u(xi, t))

∣∣∣∣
≤ Cε

∣∣∣∣ ∂2

∂x2
u(xi, t)−D+

xD
−
x u(xi, t))

∣∣∣∣
+ Cε

∣∣∣∣(h2

ρ2
i

− 1
)
D+
xD
−
x u(xi, t)

∣∣∣∣+ Ch

∣∣∣∣ ∂2

∂x2
u(xi, t)

∣∣∣∣
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≤ Cεh2

∣∣∣∣ ∂4

∂x4
u(xi, t)

∣∣∣∣+ Ch

∣∣∣∣ ∂2

∂x2
u(xi, t)

∣∣∣∣.
Hence, we obtain the bound as:

(3.11)
∣∣Lh(u(xi, t))− Ui(t))

∣∣ ≤ Cεh2

∣∣∣∣ ∂4

∂x4
u(xi, t)

∣∣∣∣+ Ch

∣∣∣∣ ∂2

∂x2
u(xi, t)

∣∣∣∣.
Above we used the estimate ε

∣∣h2

ρ2i
− 1

∣∣ ≤ Ch which based on the non-standard

denominator function behavior used in [27]. Let γ = aih/ε, γ ∈ (0,∞). Then

ε

∣∣∣∣h2

ρ2
i

− 1

∣∣∣∣ = ε

∣∣∣∣ h2

hε
a(xi)

(
exp

(ha(xi)
ε

)
− 1
) − 1

∣∣∣∣ = aih

∣∣∣∣ 1

exp(γ)− 1
− 1

γ

∣∣∣∣ =: aihR(γ),

where R(γ) = exp(γ)−1−γ
γ(exp(γ)−1

) , and from this we obtain the bounds limγ→0R(γ) = 1
2

and limγ→∞R(γ) = 0. Therefore R(γ) ≤ C, γ ∈ (0,∞).
Using the boundedness of the derivatives of the solution in Lemma 2.4, with
Eq.(3.11), we obtain:

∣∣Lh(u(xi, t))− Ui(t))
∣∣ ≤ Cεh2

∣∣∣∣1 + ε−4 exp
(−α(1− xi)

ε

)∣∣∣∣
+ Ch

∣∣∣∣1 + ε−2 exp
(−α(1− xi)

ε

)∣∣∣∣
≤ Ch2

∣∣∣∣ε+ ε−3 exp
(−α(1− xi)

ε

)∣∣∣∣
+ Ch

∣∣∣∣1 + ε−2 exp
(−α(1− xi)

ε

)∣∣∣∣
≤ Ch2

∣∣∣∣1 + ε−3 exp
(−α(1− xi)

ε

)∣∣∣∣
+ Ch

∣∣∣∣1 + ε−3 exp
(−α(1− xi)

ε

)∣∣∣∣, since ε−2 ≤ ε−3

≤ Ch
(

1 + max
i

exp
(
− α(1− xi)/ε

)
ε3

)
. 2

Lemma 3.3. For a fixed mesh and for ε→ 0, it holds

lim
ε→0

max
1≤j≤M−1

exp(−α(1− xj)/ε)
εn

= 0, n = 1, 2, 3, ...

where xj = jh, h = 1/M,∀j = 1(1)M − 1.

Proof. Consider the partition [0, 1] : 0 = x0 < x1 < ... < xM = 1 for the interior
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grid points. We have

max
1≤j≤M−1

(exp(−αxj)/ε)
εn

≤ (exp(−αx1)/ε)

εn
=

(exp(−αh)/ε)

εn
and

max
1≤j≤M−1

(exp(1− αxj)/ε)
εn

≤ (exp(−α(1− xM−1)/ε)

εn
=

(exp(−αh)/ε)

εn
.

Since x1 = h, 1− xM−1 = h, repeated applications of L’Hospital’s rule gives

lim
ε→0

exp(−αh/ε)
εn

= lim
s=1/ε→∞

sn

exp(αhs)
= lim
s=1/ε→∞

n!

(αh)n exp(αhs)
= 0.

This complete the proof. 2

Theorem 3.2. Under the hypothesis of boundedness of the semi-discrete solution
from Lemma 3.3 and Theorem 3.1 above, the semi-discrete solution satisfies the
following bound.

(3.12) sup
0<ε≤1

||u(xi, t)− Ui(t)||ΩM ≤ CM−1,

where ‖u(xi, t)− Ui(t)‖ΩM = max0≤i≤M |u(xi, t)− Ui(t)|.
Proof. This is immediate from the boundedness of the solution from Lemma 3.3
and Theorem 3.1 which the required estimates. 2

3.3. Discretization in Temporal Direction

On the time domain [0, T ], we introduce the discretization with step size ∆t =
tj+1 − tj , j = 1(1)K so that QK be discretized domain where K is the number
of mesh in the temporal direction. We use a lower order numerical scheme for
discretizing the system of initial value problems in Eq.(3.7), and use a Runge-Kutta
method developed by Bogacki and Shampine in [26]. First rewrite Eq.(3.7) in the
form:

(3.13)
dUi(t)

dt
= f(t, Ui(t)), i = 0(1)M

with the initial condition U(xi, 0) = φ(xi), i = 0(1)M . Here f(t, Ui(t)) = −AUi(t)+
Fi(t) so for each j = 1(1)K we write the scheme as:

K1 = f(tj , Ui,j),
K2 = f(tj + 1

2∆t, Ui,j + 1
2∆tK1),

K3 = f(tj + 3
4∆t, Ui,j + 3

4∆tK2),
U∗i,j+1 = Ui,j + 2

9∆tK1 + 1
9∆tK2 + 4

9∆tK3,
K4 = f(tj + ∆t, U∗i,j+1),
Ui,j+1 = Ui,j + 7

24∆tK1 + 1
4∆tK2 + 1

3∆tK3 + 1
8∆tK4
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where Ui,j denotes the approximation of Ui(t) at the grid point tj . It is stated in
[15] that, for j = 1(1)K, the local approximation Ui,j+1 to Ui(tj+1) has third order
accuracy (i.e. O(∆t)3).

Lemma 3.4. From the above approximation method in the temporal direction, the
global error estimates in this direction are given by

||Ej+1|| = ||Ui(tj+1)− Ui,j+1||QK ≤ C(4t)2,

where Ej+1 is the global error in the temporal direction at time step (j + 1)th.

Proof. Using the local error estimate ej up to the jth time step, we obtain the
global error estimate at the (j + 1)th time step.

||Ej+1|| =
j∑
i=1

||ei||, j ≤ K

≤||e1||+ ||e2||+ ....+ ||ej ||, ||ej || = C(∆tj)
3

≤C1(j∆t)(∆t)2

≤C1T (∆t)2, since j∆t ≤ T
≤C(∆t)2. 2

Then using the boundedness of the solution, Lemma 3.4 implies

(3.14) sup
0<ε≤1

||Ui(tj+1)− Ui,j+1||ΩK ≤ C(∆t)2.

This shows that the discretization in temporal direction is consistent and global
error is bounded. Now we use Eq.(3.14) to prove the ε-uniform convergence of the
fully discrete scheme as

sup
0<ε≤1

||u(xi, tj)− Ui,j ||ΩM×QK ≤ sup
0<ε≤1

||U(xi, tj)− Ui(tj)||ΩM

+ sup
0<ε≤1

||Ui(tj)− Ui,j ||QK .

(3.15)

Using boundedness of the solution, Theorem 3.2, and Eq.(3.14), we obtain:

(3.16) sup
0<ε≤1

||u(xi, tj)− Ui,j ||ΩM×QK ≤ C
(
M−1 + (4t)2

)
.

4. Numerical Experiments and Discussion

To validate the established theoretical results in this paper, we perform exper-
iments using the proposed numerical scheme on the problem of the form given in
Eq.(2.1).
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Example 4.1. In this example, we consider the initial boundary value problem:
∂u
∂t −ε

∂2u
∂x2 +(2−x2)∂u∂x +xu(x, t) = 10t2e−tx(1−x), (x, t) ∈ (0, 1)×(0, 1] with initial

condition u(x, 0) = 0, x ∈ [0, 1], and boundary conditions u(0, t) = 0, t ∈ [0, 1],
u(1, t) = 0, t ∈ [0, 1].

Example 4.2. In this example, we consider the initial boundary value problem:
∂u
∂t − ε

∂2u
∂x2 + (1 + x(1− x))∂u∂x = f(x, t), (x, t) ∈ (0, 1)× (0, 1] with initial condition

u(x, 0) = 0, x ∈ [0, 1], and boundary conditions u(0, t) = 0, t ∈ [0, 1], u(1, t) =
0, t ∈ [0, 1] where we choose the initial and the source functions f(x, t) are from the

exact solution u(x, t) = e−t(c1 + c2x− e−(1−x)ε) where c1 = e−
1
ε and c2 = 1− e− 1

ε .

The exact solution is not known for the first example, therefore maximum nodal
errors are calculated using the double mesh principle given in [27] as

EM,∆t
ε = max

1≤i≤M−1,1≤j≤K−1

∣∣UM,∆t
i,j − U2M,∆t/2

i,j

∣∣,
where M is the number of mesh points in x and ∆t is the mesh length in the t
direction. Let UM,∆t

i,j be the computed solution of the problem using mesh numbers

M and ∆t, and let U
2M,∆t/2
i,j be the computed solution with twice as many (2M, 2K)

mesh points which we get by adding the mid points xi+1/2 and tj+1/2 into the
mesh. For any values M and K the ε-uniform error estimate are calculated using
the formula EM,∆t = maxε |EM,∆t

ε |.
The rate of convergence of the method is calculated using the formula

rM,∆t
ε = log2

(
EM,Mt
ε /E2M,∆t/2

ε

)
.

The solution of the problems given in Example 4.1 and 4.2 has a boundary layer
at the right side of the x-domain (see Figures 1 and 2). The computed solutions
Ui,j for different values of perturbation parameters are also shown in these figures.
The numerical results displayed in tables 1 and 3 clearly indicate that the proposed
method is ε-uniform convergent. From the results in these tables, we observe that
the maximum point-wise error decreases as M increases for each value of ε. In ad-
dition, the maximum point-wise error is stable as ε→ 0 for each M and ∆t. Using
computed results in these two examples, we confirm that the proposed numerical
method is more accurate, stable and ε-uniform convergent with the rate of conver-
gence one. The results in the proposed method are better than those given in [12]
and [28].

5. Conclusion

In this paper, an ε-uniform numerical method has been developed for solving
singularly perturbed 1-D parabolic convection-diffusion problems with a boundary
layer on the right side of the domain. The developed method is based on the
method of a line that constitutes the non-standard finite-difference for the spatial
discretization and an implicit Runge-Kutta method of order 2 and 3 is used in the
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Table 1: Maximum absolute error of Example 4.1.
ε M=32 64 128 256 512

∆t = 1
10

1
20

1
40

1
80

1
160

Proposed
Method
100 4.5685e-03 2.3613e-03 1.1974e-03 6.0256e-04 3.0220e-04
10−4 6.1336e-03 3.5748e-03 1.9245e-03 9.9750e-04 5.0763e-04
10−6 6.1336e-03 3.5748e-03 1.9245e-03 9.9750e-04 5.0763e-04
10−8 6.1336e-03 3.5748e-03 1.9245e-03 9.9750e-04 5.0763e-04
EM,Mt 6.1336e-03 3.5748e-03 1.9245e-03 9.9750e-04 5.0763e-04
Result
in [12]
100 9.2151e-04 4.6408e-04 2.3891e-04 1.2182e-04 6.2135e-05
10−4 1.1342e-02 6.2851e-03 3.2988e-03 1.7175e-03 8.6996e-04
10−6 1.3838e-02 6.6509e-03 3.4377e-03 1.7677e-03 8.9286e-04
10−8 1.4524e-02 6.7667e-03 3.6247e-03 1.7939e-03 8.9428e-04
EM,∆t 1.4524e-02 6.7667e-03 3.6247e-03 1.7939e-03 8.9428e-04

Figure 1: 3-D plot of the numerical solution of Example 4.1 with ε = 10−1

on left side, and ε = 10−5 on right side.

temporal direction for the system of initial value problem resulting from the spatial
discretization. The stability and convergence of the proposed scheme are analyzed.
Two model examples have been considered to validate the theoretical analysis by
taking different values for the perturbation parameter ε. The computational results
are presented in tables and figures. The proposed numerical scheme is first-order
convergent. The performance of the scheme is investigated by comparing the results
with prior studies. The proposed method gives more accurate and ε-uniformly
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Table 2: Rate of convergence of the numerical scheme for Example 4.1.
ε M=32 64 128 256 512

∆t = 1
10

1
20

1
40

1
80

1
160

Proposed Method
100 0.9521 0.9797 0.9907 0.9956 0.9978

10−4 0.7789 0.8934 0.9481 0.9745 0.9590
10−6 0.7789 0.8934 0.9481 0.9745 0.9590
10−8 0.7789 0.8934 0.9481 0.9745 0.9590

Result in [12]
100 0.9896 0.9579 0.9717 0.9712 0.9876

10−4 0.8517 0.9299 0.9416 0.9812 0.9849
10−6 1.0570 0.9521 0.9595 0.9853 0.9955
10−8 1.1019 0.9005 1.0148 1.0043 0.9925

Figure 2: 3-D plot of the numerical solution of Example 4.2 with ε = 10−1

on left the side and ε = 10−4 on the right side.

convergent numerical results.
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