KYUNGPOOK Math. J. 60(2020), 477-484
https://doi.org/10.5666/KMJ.2020.60.3.477
pISSN 1225-6951 eISSN 0454-8124
(c) Kyungpook Mathematical Journal

# On the Fekete-Szegö Problem for Starlike Functions of Complex Order 

Hanan Darwish and Abdel-Moniem Lashin<br>Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516 Egypt<br>e-mail: darwish333@yahoo.com and aylashin@mans.edu.eg

Bashar Al Saeedi*
Department of Mathematics, Faculty of Science $\mathfrak{E}$ Engineering, Manchester Metropolitan University, Manchester, M15GD, UK
e-mail: basharfalh@yahoo.com
Abstract. For a non-zero complex number $b$ and for $m$ and $n$ in $\mathcal{N}_{0}=\{0,1,2, \ldots\}$ let $\Psi_{n, m}(b)$ denote the class of normalized univalent functions $f$ satisfying the condition $\Re\left[1+\frac{1}{b}\left(\frac{D^{n+m} f(z)}{D^{n} f(z)}-1\right)\right]>0$ in the unit disk $U$, where $D^{n} f(z)$ denotes the Salagean operator of $f$. Sharp bounds for the Fekete-Szegö functional $\left|a_{3}-\mu a_{2}^{2}\right|$ are obtained.

## 1. Introduction

Fekete and Szegö proved the remarkable result that the estimate

$$
\left|a_{3}-\lambda a_{2}^{2}\right| \leq 1+2 \exp \left(\frac{-2 \lambda}{1-\lambda}\right)
$$

holds with $0 \leq \lambda \leq 1$ for any normalized univalent function

$$
\begin{equation*}
f(z)=z+a_{2} z^{2}+a_{3} z^{3}+\ldots \tag{1.1}
\end{equation*}
$$

in the open unit disk $U$. This inequality is sharp for all $\lambda$ (see [7]). The coefficient functional

$$
\phi(f(z))=a_{3}-\lambda a_{2}^{2}=\frac{1}{6}\left(f^{\prime \prime \prime}(0)-\frac{3 \lambda}{2}\left[f^{\prime \prime}(0)\right]^{2}\right)
$$

in the unit disk represents various geometric quantities. For example, when $\lambda=1$, $\phi(f(z))=a_{3}-\lambda a_{2}^{2}$ becomes $S_{f}(0) / 6$ where $S_{f}$ denotes the Schwarzian derivative

* Corresponding Author.

Received January 28, 2016; revised May 3, 2020; accepted May 4, 2020.
2010 Mathematics Subject Classification: 30C4.
Key words and phrases: coefficient estimates, Salagean operator, Fekete Szego problem, starlike functions of complex order.
$\left(f^{\prime \prime} / f^{\prime}\right)^{\prime}-\left(f^{\prime \prime} / f^{\prime}\right)^{2} / 2$. Note that, if we consider the nth root transform $\left[f\left(z^{n}\right)\right]^{1 / n}=$ $z+c_{n+1} z^{n+1}+c_{2 n+1} z^{2 n+1}+\ldots$ of $f$ with the power series (1.1), then $c_{n+1}=a_{2} / n$ and $c_{2 n+1}=a_{3} / n+(n-1) a_{2}^{2} / 2 n^{2}$, so that

$$
a_{3}-\lambda a_{2}^{2}=n\left(c_{2 n+1}-\mu c_{n+1}^{2}\right),
$$

where $\mu=\lambda n+(n-1) / 2$. Moreover, $\phi(f(z))$ behaves well with respect to the rotation, namely $\phi\left(\left(e^{-i \theta} f\left(e^{i \theta} z\right)\right)=e^{2 i \theta} \phi(f)\right.$, for $\theta \in R$.

This is quite natural to discuss the behavior of $\phi(f(z))$ for subclasses of normalized univalent functions in the unit disk. This is called the Fekete-Szegö problem. Many authors have considered this problem for typical classes of univalent functions (see, for instance [1, 2]).

We denote by $A$ the set of all functions of the from (1.1) that are normalized analytic and univalent in the unit disk $U$. Also, for $0 \leq \alpha<1$, let $S^{*}(\alpha)$ and $C(\alpha)$ denote the classes of starlike and convex univalent functions of order $\alpha$, respectively, i.e., let

$$
\begin{equation*}
S^{*}(\alpha)=\left\{f(z) \in A: \Re\left(\frac{z f^{\prime}(z)}{f(z)}\right)>\alpha, z \in U\right\} \tag{1.2}
\end{equation*}
$$

and

$$
\begin{equation*}
C(\alpha)=\left\{f(z) \in A: \Re\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)>\alpha, z \in U\right\} . \tag{1.3}
\end{equation*}
$$

The notions of $\alpha$-starlikeness and $\alpha$-convexity were generalized onto a complex order by Nasr and Aouf [4], Wiatrowski [8], and Nasr and Aouf [3].

Observe that $S^{*}(0)=S^{*}$ and $C(0)=C$ represent standard starlike and convex univalent functions, respectively.

Let $f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k}$ and $g(z)=z+\sum_{k=2}^{\infty} b_{k} z^{k}$ be analytic functions in $U$. The Hadamard product (convolution) of $f$ and $g$, denoted by $f * g$ is defined by

$$
(f * g)(z)=z+\sum_{k=2}^{\infty} a_{k} b_{k} z^{k}, z \in U .
$$

For a function $f(z)$ in $A$, we define

$$
\begin{aligned}
& D^{0} f(z)=f(z), \\
& D^{1} f(z)=D f(z)=z f^{\prime}(z)
\end{aligned}
$$

and

$$
D^{n} f(z)=D\left(D^{n-1} f(z)\right), n \in \mathcal{N}=\{0,1,2, \ldots\} .
$$

With the above operator $D^{n}$, we say that a function $f(z)$ belonging to $A$ is in the class $A(n, m, \alpha)$ if and only if

$$
\begin{equation*}
\Re\left\{\frac{D^{n+m} f(z)}{D^{n} f(z)}\right\}>\alpha\left(n, m \in \mathcal{N}_{0}=N \cup\{0\}\right) \tag{1.4}
\end{equation*}
$$

for some $\alpha(0 \leq \alpha<1)$, and for all $z \in U$.
We note that $A(0,1, \alpha)=S^{*}(\alpha)$ is the class of starlike functions of order $\alpha$, $A(1,1, \alpha)=C(\alpha)$ is the class of convex functions of order $\alpha$, and that $A(1,0, \alpha)=$ $A_{n}(\alpha)$ is the class of functions defined by Salagean [6].
Definition 1.1. Let $b$ be a nonzero complex number, and let $f$ be an univalent function of the form (1.1), such that $D^{n+m} f(z) \neq 0$ for $z \in U \backslash\{0\}$. We say that $f$ belongs to $\Psi_{n, m}(b)$ if

$$
\begin{equation*}
\Re\left\{1+\frac{1}{b}\left(\frac{D^{n+m} f(z)}{D^{n} f(z)}-1\right)\right\}>0, z \in U \tag{1.5}
\end{equation*}
$$

By giving specific values to $n, m$ and $b$, we obtain the following important subclasses studied by various researchers in earlier works, for instance, $\Psi_{1,0}(b)=$ $S^{*}(1-b)\left(\right.$ Nasr and Aouf [4]), $\Psi_{1,1}(b)=C(1-b)$ (Wiatrowski [8], Nasr and Aouf [3]).

## 2. Main Results

We denote by $\mathcal{P}$ class of the analytic functions in $U$ with $p(0)=1$ and $\Re(p(z))>0$. We shall require the following:
Lemma 2.1.([5], p.166) Let $p \in \mathcal{P}$ with $p(z)=1+c_{1} z+c_{2} z^{2}+\ldots$, then

$$
\left|c_{n}\right| \leq 2, \quad \text { for } n \geq 1
$$

If $\left|c_{1}\right|=2$ then $p(z) \equiv p_{1}(z)=\left(1+\gamma_{1} z\right) /\left(1-\gamma_{1} z\right)$ with $\gamma_{1}=c_{1} / 2$. Conversely, if $p(z) \equiv p_{1}(z)$ for some $\left|\gamma_{1}\right|=1$, then $c_{1}=2 \gamma_{1}$ and $\left|c_{1}\right|=2$. Furthermore we have

$$
\left|c_{2}-\frac{c_{1}^{2}}{2}\right| \leq 2-\frac{\left|c_{1}\right|}{2}
$$

If $\left|c_{1}\right|<2$ and $\left|c_{2}-\frac{c_{1}^{2}}{2}\right|=2-\frac{\left|c_{1}\right|}{2}$, then $p(z) \equiv p_{2}(z)$, where

$$
p_{2}(z)=\frac{1+\frac{\gamma_{2} z+\gamma_{1}}{1+\bar{\gamma}_{1}+\gamma_{2} z}}{1-\frac{\gamma_{2} z+\gamma_{1}}{1+\tilde{\gamma}_{1}+\gamma_{2} z}},
$$

and $\gamma_{1}=c_{1} / 2, \gamma_{2}=\frac{2 c_{2}-c_{1}^{2}}{4-\left|c_{1}\right|^{2}}$. Conversely if $p(z) \equiv p_{2}(z)$ for some $\left|\gamma_{1}\right|<1$ and $\left|\gamma_{2}\right|=1$, then $\gamma_{1}=c_{1} / 2, \gamma_{2}=\frac{2 c_{2}-c_{1}^{2}}{4-\left|c_{1}\right|^{2}}$ and $\left|c_{2}-\frac{c_{1}^{2}}{2}\right|=2-\frac{\left|c_{1}\right|}{2}$.
Theorem 2.2. Let $n, m \geq 0$ and let $b$ be non-zero complex number. If $f$ of the form (1.1) is in $\Psi_{n, m}(b)$, then

$$
\begin{equation*}
\left|a_{2}\right| \leq \frac{2|b|}{2^{n}\left(2^{m}-1\right)} \tag{2.1}
\end{equation*}
$$

$$
\begin{equation*}
\left|a_{3}\right| \leq \frac{2|b|}{3^{n}\left(3^{m}-1\right)} \max \left\{1, \frac{\left|\left(2^{m}-1\right)+2 b\right|}{\left(2^{m}-1\right)}\right\} \tag{2.2}
\end{equation*}
$$

and

$$
\left|a_{3}-\frac{2^{2} n\left(2^{m}-1\right)}{3^{n}\left(3^{m}-1\right)} a_{2}^{2}\right| \leq \frac{2|b|}{3^{n}\left(3^{m}-1\right)} .
$$

Equality in (2.1) holds if $D^{n+m} f(z) / D^{n} f(z)=1+b\left[p_{1}(z)-1\right]$, and in (2.2) if $D^{n+m} f(z) / D^{n} f(z)=1+b\left[p_{2}(z)-1\right]$, where $p_{1}, p_{2}$ are given in Lemma 2.1.
Proof. Denote $F(z)=D^{n} f(z)=z+A_{2} z^{2}+A_{3} z^{3}+\ldots, D^{m} F(z)=D^{n+m} f(z)=$ $z+2^{m} A_{2} z^{2}+3^{m} A_{3} z^{3}+\ldots$, where $A_{2}=2^{n} a_{2}$ and $A_{3}=3^{n} a_{3}, \ldots$, then

$$
\begin{equation*}
2^{m} A_{2}=2^{n+m} a_{2}, \quad 3^{m} A_{3}=3^{n+m} a_{3} \tag{2.3}
\end{equation*}
$$

By the definition of the class $\Psi_{n, m}(b)$ there exists $p \in \mathcal{P}$ such that $\frac{D^{m} F(z)}{F(z)}=$ $1-b+b p(z)$, so that

$$
\frac{z+2^{m} A_{2} z^{2}+3^{m} A_{3} z^{3}+\ldots}{z+A_{2} z^{2}+A_{3} z^{3}+\ldots}=1-b+b\left(1+c_{1} z+c_{2} z^{2}+\ldots\right)
$$

which implies the equality

$$
z+2^{m} A_{2} z^{2}+3^{m} A_{3} z^{3}+\ldots=z+\left(A_{2}+b c_{1}\right) z^{2}+\left(A_{3}+b c_{1} A_{2}+b c_{2}\right) z^{3}+\ldots
$$

Equating the coefficients of both sides we have

$$
\begin{equation*}
A_{2}=\frac{b}{2^{m}-1} c_{1}, \quad A_{3}=\frac{b}{3^{m}-1}\left[c_{2}+\frac{b c_{1}^{2}}{2^{m}-1}\right] \tag{2.4}
\end{equation*}
$$

so that, on account of $D^{n+m} f(z)$

$$
\begin{equation*}
a_{2}=\frac{b c_{1}}{2^{n}\left(2^{m}-1\right)}, \quad a_{3}=\frac{b}{3^{n}\left(3^{m}-1\right)}\left[c_{2}+\frac{b}{\left(2^{m}-1\right)} c_{1}^{2}\right] \tag{2.5}
\end{equation*}
$$

Taking into account (2.5) and Lemma 2.1, we obtain

$$
\left|a_{2}\right|=\left|\frac{b}{2^{n}\left(2^{m}-1\right)} c_{1}\right| \leq \frac{2|b|}{2^{n}\left(2^{m}-1\right)},
$$

and

$$
\begin{aligned}
\left|a_{3}\right| & =\left|\frac{b}{3^{n}\left(3^{m}-1\right)}\left[c_{2}-\frac{c_{1}^{2}}{2}+\frac{\left(2^{m}-1\right)+2 b}{2\left(2^{m}-1\right)} c_{1}^{2}\right]\right| \\
& \leq \frac{|b|}{3^{n}\left(3^{m}-1\right)}\left[2-\frac{\left|c_{1}^{2}\right|}{2}+\frac{\left|\left(2^{m}-1\right)+2 b\right|}{2\left(2^{m}-1\right)}\left|c_{1}^{2}\right|\right] \\
& =\frac{|b|}{3^{n}\left(3^{m}-1\right)}\left[2+\frac{\left|\left(2^{m}-1\right)+2 b\right|-\left(2^{m}-1\right)}{2\left(2^{m}-1\right)}\left|c_{1}^{2}\right|\right] \\
& \leq \frac{2|b|}{3^{n}\left(3^{m}-1\right)} \max \left\{1,1+\frac{\left|\left(2^{m}-1\right)+2 b\right|-\left(2^{m}-1\right)}{\left(2^{m}-1\right)}\right\} .
\end{aligned}
$$

Thus

$$
\begin{equation*}
\left|a_{3}\right| \leq \frac{2|b|}{3^{n}\left(3^{m}-1\right)} \max \left\{1, \frac{\left|\left(2^{m}-1\right)+2 b\right|}{\left(2^{m}-1\right)}\right\} \tag{2.6}
\end{equation*}
$$

Moreover

$$
\begin{aligned}
\left|a_{3}-\frac{2^{2 n}\left(2^{m}-1\right)}{3^{n}\left(3^{m}-1\right)} a_{2}^{2}\right| & =\left|\frac{b}{3^{n}\left(3^{m}-1\right)}\left[c_{2}+\frac{b}{\left(2^{m}-1\right)} c_{1}^{2}\right]-\frac{b^{2} c_{1}^{2}}{\left[2^{n}\left(2^{m}-1\right)\right]^{2}} \frac{2^{2 n}\left(2^{m}-1\right)}{3^{n}\left(3^{m}-1\right)}\right| \\
& =\left|\frac{b c_{2}}{3^{n}\left(3^{m}-1\right)}\right| \\
& \leq \frac{2|b|}{3^{n}\left(3^{m}-1\right)},
\end{aligned}
$$

as asserted.
Remark 2.3. Putting $b=1-\alpha$ in the above theorem we get the following corollary.
Corollary 2.4. Let $n, m \geq 0$. If $f$ of the form (1.1) is in $A(n, m, \alpha)$, then

$$
\begin{gathered}
\left|a_{2}\right| \leq \frac{2(1-\alpha)}{2^{n}\left(2^{m}-1\right)} \\
\left|a_{3}\right| \leq \frac{2(1-\alpha)}{3^{n}\left(3^{m}-1\right)} \max \left\{1, \frac{\left(2^{m}+1-2 \alpha\right)}{\left(2^{m}-1\right)}\right\},
\end{gathered}
$$

and

$$
\left|a_{3}-\frac{2^{2 n}\left(2^{m}-1\right)}{3^{n}\left(3^{m}-1\right)} a_{2}^{2}\right| \leq \frac{2(1-\alpha)}{3^{n}\left(3^{m}-1\right)}
$$

Remark 2.5. In the above Theorem 2.2 and Corollary 2.4 a special case of FeketeSzegö problem e.g. for real $\mu=2^{2 n}\left(2^{m}-1\right) / 3^{n}\left(3^{m}-1\right)$ occurred very naturally and simple estimate was obtained.

Now, we consider functional $\left|a_{3}-\mu a_{2}^{2}\right|$ for complex $\mu$.
Theorem 2.6. Let b be a non-zero complex number and let $f \in \Psi_{n, m}(b)$. Then for $\mu \in \mathbb{C}$

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{2|b|}{3^{n}\left(3^{m}-1\right)} \max \left\{1,\left|1+\frac{2 b}{\left(2^{m}-1\right)}-2 \mu b \frac{3^{n}\left(3^{m}-1\right)}{\left[2^{n}\left(2^{m}-1\right)\right]^{2}}\right|\right\}
$$

For each $\mu$ there is a function in $\Psi_{n, m}(b)$ such that equality holds.

Proof. Applying (2.5) we have

$$
\begin{aligned}
a_{3}-\mu a_{2}^{2} & =\frac{b}{3^{n}\left(3^{m}-1\right)}\left[c_{2}+\frac{b}{\left(2^{m}-1\right)} c_{1}^{2}\right]-\mu \frac{b^{2} c_{1}^{2}}{\left[2^{n}\left(2^{m}-1\right)\right]^{2}} \\
& =\frac{b}{3^{n}\left(3^{m}-1\right)}\left[c_{2}+\frac{b}{\left(2^{m}-1\right)} c_{1}^{2}-\mu b \frac{3^{n}\left(3^{m}-1\right)}{\left[2^{n}\left(2^{m}-1\right)\right]^{2}} c_{1}^{2}\right] \\
& =\frac{b}{3^{n}\left(3^{m}-1\right)}\left[c_{2}-\frac{c_{1}^{2}}{2}+\frac{c_{1}^{2}}{2}\left(1+\frac{2 b}{\left(2^{m}-1\right)}-2 \mu b \frac{3^{n}\left(3^{m}-1\right)}{\left[2^{n}\left(2^{m}-1\right)\right]^{2}}\right)\right] .
\end{aligned}
$$

Then, with the aid of Lemma 2.1, we obtain

$$
\begin{aligned}
\left|a_{3}-\mu a_{2}^{2}\right| & \leq \frac{|b|}{3^{n}\left(3^{m}-1\right)}\left[2-\frac{\left|c_{1}\right|^{2}}{2}+\frac{\left|c_{1}\right|^{2}}{2}\left|1+\frac{2 b}{\left(2^{m}-1\right)}-2 \mu b \frac{3^{n}\left(3^{m}-1\right)}{\left[2^{n}\left(2^{m}-1\right)\right]^{2}}\right|\right] \\
& =\frac{|b|}{3^{n}\left(3^{m}-1\right)}\left[2+\frac{\left|c_{1}\right|^{2}}{2}\left(\left|1+\frac{2 b}{\left(2^{m}-1\right)}-2 \mu b \frac{3^{n}\left(3^{m}-1\right)}{\left[2^{n}\left(2^{m}-1\right)\right]^{2}}\right|-1\right)\right] \\
& \leq \frac{2|b|}{3^{n}\left(3^{m}-1\right)} \max \left\{1,\left|1+\frac{2 b}{\left(2^{m}-1\right)}-2 \mu b \frac{3^{n}\left(3^{m}-1\right)}{\left[2^{n}\left(2^{m}-1\right)\right]^{2}}\right|\right\} .
\end{aligned}
$$

An examination of the proof shows that equality is attained for the first case, when $c_{1}=0, c_{2}=2$, then the functions in $\Psi_{n, m}(b)$ is given by

$$
\begin{equation*}
\frac{D^{n+m} f(z)}{D^{n} f(z)}=\frac{1+(2 b-1) z}{1-z}, \tag{2.7}
\end{equation*}
$$

and, for the second case, when $c_{1}=c_{2}=2$, so that

$$
\begin{equation*}
\frac{D^{n+m} f(z)}{D^{n} f(z)}=\frac{1+(2 b-1) z^{2}}{1-z} \tag{2.8}
\end{equation*}
$$

respectively.
Remark 2.7. Putting $b=1-\alpha$ in the above theorem we get the following corollary.
Corollary 2.8. Let $f \in A(n, m, \alpha)$. Then for $\mu \in \mathbb{C}$

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{2(1-\alpha)}{3^{n}\left(3^{m}-1\right)} \max \left\{1,\left|1+\frac{2(1-\alpha)}{\left(2^{m}-1\right)}-2 \mu(1-\alpha) \frac{3^{n}\left(3^{m}-1\right)}{\left[2^{n}\left(2^{m}-1\right)\right]^{2}}\right|\right\}
$$

For each $\mu$ there is a function in $A(n, m, \alpha)$ such that equality holds.
We next consider the case, when $\mu$ and $b$ are real. Then we have:
Theorem 2.9. Let $b>0$ and let $f \in \Psi_{n, m}(b)$. Then for $\mu \in R$ we have


For each there is a function in $\Psi_{n, m}(b)$ such that equality holds.
Proof. First, let $\mu \leq \frac{2^{2 n}\left(2^{m}-1\right)}{3^{n}\left(3^{m}-1\right)}$ In this case, (2.5) and Lemma 2.1 give

$$
\begin{aligned}
\left|a_{3}-\mu a_{2}^{2}\right| & \leq \frac{b}{3^{n}\left(3^{m}-1\right)}\left[2-\frac{\left|c_{1}\right|^{2}}{2}+\frac{\left|c_{1}\right|^{2}}{2}\left(1+\frac{2 b}{\left(2^{m}-1\right)}-2 \mu b \frac{3^{n}\left(3^{m}-1\right)}{\left[2^{n}\left(2^{m}-1\right)\right]^{2}}\right)\right] \\
& \leq \frac{2 b}{3^{n}\left(3^{m}-1\right)}\left[1+\frac{2 b}{\left(2^{m}-1\right)}\left(1-\mu \frac{3^{n}\left(3^{m}-1\right)}{2^{2 n}\left(2^{m}-1\right)}\right)\right]
\end{aligned}
$$

Let, now $\frac{2^{2 n}\left(2^{m}-1\right)}{3^{n}\left(3^{m}-1\right)} \leq \mu \leq \frac{2^{2 n}\left(2^{m}-1\right)\left[\left(2^{m}-1\right)+2 b\right]}{2 b\left[3^{n}\left(3^{m}-1\right)\right]}$. Then, using the above calculations, we obtain

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{b}{3^{n}\left(3^{m}-1\right)}
$$

Finally, if $\mu \geq \frac{2^{2 n}\left(2^{m}-1\right)\left[\left(2^{m}-1\right)+2 b\right]}{2 b\left[3^{n}\left(3^{m}-1\right)\right]}$, then

$$
\begin{aligned}
\left|a_{3}-\mu a_{2}^{2}\right| & \leq \frac{b}{3^{n}\left(3^{m}-1\right)}\left[2-\frac{\left|c_{1}\right|^{2}}{2}+\frac{\left|c_{1}\right|^{2}}{2}\left(2 \mu b \frac{3^{n}\left(3^{m}-1\right)}{\left[2^{n}\left(2^{m}-1\right)\right]^{2}}-1-\frac{2 b}{\left(2^{m}-1\right)}\right)\right] \\
& =\frac{b}{3^{n}\left(3^{m}-1\right)}\left[2+\frac{\left|c_{1}\right|^{2}}{2}\left(2 \mu b \frac{3^{n}\left(3^{m}-1\right)}{\left[2^{n}\left(2^{m}-1\right)\right]^{2}}-2-\frac{2 b}{\left(2^{m}-1\right)}\right)\right] \\
& \leq \frac{2 b}{3^{n}\left(3^{m}-1\right)}\left[2 \mu b \frac{3^{n}\left(3^{m}-1\right)}{\left[2^{n}\left(2^{m}-1\right)\right]^{2}}-1-\frac{2 b}{\left(2^{m}-1\right)}\right]
\end{aligned}
$$

Equality is attained for the second case on choosing $c_{1}=0, c_{2}=2$ in (2.7) and in (2.8) by choosing $c_{1}=2, c_{2}=2$ and $c_{1}=2 i, c_{2}=-2$ for the first and third case, respectively. Thus the proof is complete.
Remark 2.10. Put $b=1-\alpha$ in the above theorem we get the following corollary.
Corollary 2.11. Let $f \in A(n, m, \alpha)$. Then for $\mu \in R$ we have
$\left|a_{3}-\mu a_{2}^{2}\right| \leq\left\{\begin{array}{cc}\frac{2(1-\alpha)}{3^{n}\left(3^{m}-1\right)}\left[1+\frac{2(1-\alpha)}{\left(2^{m}-1\right)}\left(1-\mu \frac{3^{n}\left(3^{m}-1\right)}{2^{2 n}\left(2^{m}-1\right)}\right)\right] & \text { if } \mu \leq \frac{2^{2 n}\left(2^{m}-1\right)}{3^{n}\left(3^{m}-1\right),} \\ \frac{1-\alpha)}{3^{n}\left(3^{m}-1\right)} & \text { if } \frac{2^{2 n}\left(2^{m}-1\right)}{3^{n}\left(3^{m}-1\right)} \leq \mu \leq \frac{2^{2 n}\left(2^{m}-1\right)\left[2^{m}+1-2 \alpha\right]}{2(-\alpha)\left[3^{n}\left(3^{m}-1\right)\right],} \\ \frac{2(1-\alpha)}{3^{n}\left(3^{m}-1\right)}\left[2 \mu(1-\alpha) \frac{\left.3^{n}\left(3^{m}-1\right)\right]}{\left[2^{n}\left(2^{m}-1\right)\right]^{2}}-1-\frac{2(1-\alpha)}{\left(2^{m}-1\right)}\right] & \text { if } \mu \geq \frac{2^{2 n}\left(2^{m}-1\right)\left[2^{m}+1-2 \alpha\right]}{2(1-\alpha)\left[3^{3 n}\left(3^{m}-1\right)\right] .}\end{array}\right.$
For each there is a function in $A(n, m, \alpha)$ such that equality holds.

## References

[1] M. Darus and D. K. Thomas, On the Fekete-Szegö theorem for close-to-convex functions, Math. Japon., 44(1996), 507-511.
[2] M. Darus and D. K. Thomas, On the Fekete-Szegö theorem for close-to-convex functions, Math. Japon., 47(1998), 125-132.
[3] M. A. Nasr and M. K. Aouf, On convex functions of complex order, Mansoura Sci. Bull., (1982), 565-582.
[4] M. A. Nasr and M. K. Aouf, Starlike function of complex order, J. Natur. Sci. Math., 25(1985), 1-12.
[5] C. Pommerenke, Univalent Functions, Studia Mathematica/Mathematische Lehrbucher, Vandenhoeck and Ruprecht, 1975.
[6] G. S. Salagean, Subclasses of univalent functions, Lecture Notes in Math. 1013, 292310, Springer-Verlag, Berlin-Heidelberg-New York, 1983.
[7] T. Sekine, Generalization of certain subclasses of analytic functions, Internat. J. Math. Math. Sci., 10(4)(1987), 725-732.
[8] P. Wiatrowski, The coefficients of a certain family of holomorphic functions, Zeszyty Nauk. Univ. Lodz., Nauki. Mat. Przyrod. Ser. II, 39(1971), 75-85.

