KYUNGPOOK Math. J. 60(2020), 477-484
https://doi.org/10.5666 /KMJ.2020.60.3.477
pISSN 1225-6951  eISSN 0454-8124
© Kyungpook Mathematical Journal

On the Fekete-Szego Problem for Starlike Functions of Com-
plex Order

HANAN DARWISH AND ABDEL-MONIEM LASHIN

Department of Mathematics, Faculty of Science, Mansoura University, Mansoura
35516 Egypt

e-mail : darwish333@yahoo.com and aylashin@mans.edu.eg

BASHAR AL SAEEDI*

Department of Mathematics, Faculty of Science & Engineering, Manchester Metropoli-
tan University, Manchester, M15GD, UK

e-mail : basharfalh@yahoo.com

ABSTRACT. For a non-zero complex number b and for m and n in Ny = {0,1,2,...}

let ¥y, m(b) denote the class of normalized univalent functions f satisfying the condition
R [1 + % (%I(fz()z) — 1)} > 0 in the unit disk U, where D" f(z) denotes the Salagean

operator of f. Sharp bounds for the Fekete-Szegd functional |asz — pa3| are obtained.

1. Introduction

Fekete and Szegd proved the remarkable result that the estimate
-2
|a3 - )\ag‘ <1+ 2exp(ﬁ)

holds with 0 < A < 1 for any normalized univalent function
(1.1) f(2) =2+ a2 +azz® + ...

in the open unit disk U. This inequality is sharp for all A (see [7]). The coefficient

functional ) 3\
2
6 (f(2)) = ag = Aa3 = =(£7(0) = - [f"(O)))
in the unit disk represents various geometric quantities. For example, when A\ =1,
® (f(2)) = az — Xa3 becomes S;(0)/6 where S; denotes the Schwarzian derivative
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("1 £ —(f"/f")?/2. Note that, if we consider the nth root transform [f(z”)]l/n =
24 12"+ cop 122" + L of f with the power series (1.1), then ¢, 1 = az/n
and ca,41 = az/n + (n — 1)a3/2n?, so that

2 2
az — Aag = n(Cant1 — UCyy1),

where = An + (n — 1)/2. Moreover, ¢ (f(z)) behaves well with respect to the
rotation, namely ¢ ((e= f(e%2)) = e*"¢(f), for 6 € R.

This is quite natural to discuss the behavior of ¢ (f(z)) for subclasses of normal-
ized univalent functions in the unit disk. This is called the Fekete-Szegd problem.
Many authors have considered this problem for typical classes of univalent functions
(see, for instance [1, 2]).

We denote by A the set of all functions of the from (1.1) that are normalized
analytic and univalent in the unit disk U. Also, for 0 < a < 1, let S*(«) and C(«)
denote the classes of starlike and convex univalent functions of order «, respectively,
i.e., let

(1.2) S* (o) = {f(z)eA:%(zf/(Z)> >a,z€U}

f(z)
and
(1.3) Cla) = {f(z) cA:R (1 + Zf(i§)> >a,z€ U} .

The notions of a-starlikeness and «a-convexity were generalized onto a complex
order by Nasr and Aouf [4], Wiatrowski [8], and Nasr and Aouf [3].
Observe that S*(0) = S* and C(0) = C represent standard starlike and convex
univalent functions, respectively.
Let f(2) = z+ > ey arz® and g(z) = 2 + > _pe, bpz" be analytic functions in
U. The Hadamard product (convolution) of f and g, denoted by f * g is defined by

(fxg)(z) =2+ Zakbkzk,z ev.
k=2

For a function f(z) in A, we define
Df(z) = f(2),
D'f(z) = Df(2) = 2f'()

and
D" f(z) = D(D" "' f(2)),n € N=1{0,1,2,...}.

With the above operator D™, we say that a function f(z) belonging to A is in the
class A (n,m, ) if and only if

(1.4) ?R{D;:;{;)z)}>a(n,m€3\f0=NU{0})
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for some o (0 < v < 1), and for all z € U.

We note that A(0,1,) = S*(«) is the class of starlike functions of order «,
A(1,1,a) = C(a) is the class of convex functions of order «, and that A (1,0,«) =
Ay () is the class of functions defined by Salagean [6].

Definition 1.1. Let b be a nonzero complex number, and let f be an univalent
function of the form (1.1), such that D"*™ f(z) # 0 for z € U\ {0} . We say that f
belongs to ¥,, ,,, (b) if

(1.5) &E{l+i<m—l)}>0,zeU

By giving specific values to n,m and b, we obtain the following important
subclasses studied by various researchers in earlier works, for instance, ¥y ¢(b) =
S*(1—b) (Nasr and Aouf [4]), ¥y,1(b) = C(1 —b) (Wiatrowski [8], Nasr and Aouf

(3]).
2. Main Results

We denote by P class of the analytic functions in U with p(0) = 1 and
R (p(z)) > 0. We shall require the following:

Lemma 2.1.([5], p.166) Let p € P with p(z) = 1+ c12 + c22% + ..., then

len| <2, forn>1.

If |e1] =2 then p(z) = p1(z) = (1 +712)/(1 —y12) with 71 = ¢1/2. Conversely,
if p(z) = p1(2) for some |y1| = 1, then ¢; = 2v; and |¢1| = 2. Furthermore we have

=2 — 19l then p(2) = pa(2), where

2
If |cl\<2and’02—%1 5

Y2241
( _ 1+ 14+91+722
p2\z) = 1 — Q2ztm
1+51+722
2¢0—c? .
and 1 = ¢1/2, v2 = 422‘016‘12. Conversely if p(z) = p2(z) for some |y1| < 1 and
2c5—c? gl 9 _ lea|

2| = 1, then y1 = ¢1/2, 72 = = and |y — 3| = 5

Theorem 2.2. Let n,m > 0 and let b be non-zero complex number. If f of the
form (1.1) is in Uy, (D), then

(2.1) las| <
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(2.2) |a3| = 3n

az —

2 f @) 42
T e e
22n(2m —1) 4 2 b
3n(3m —1) 2| = 3n(3m — 1)’

Equality in (2.1) holds if D"*™ f(2)/D"f(z) = 1+ blp1(2) — 1], and in (2.2) if
D™ f(2) /D™ f(2) = 1+ bpa(z) — 1], where p1,ps are given in Lemma 2.1.

Proof. Denote F(z) = D" f
242" Ag2% +3M A58 + .

(2) = 2+ A92% + A323 + ..., D™F(2) = D""™f(z) =
where Ay = 2™as and A3 = 3"as, ...., then

(23) 2mA2 = 2”+ma2, 3mA3 = 3"+ma3

By the definition of the cl
1 —b+ bp(z), so that

24+ 2MAx2? + 3™ Az23 + ..

ass U, ., (b) there exists p € P such that F(z() 2 =

z+ Axz? + Aj
which implies the equality

Z+ 2mA222 + 377LA3Z3 + ...

Equating the coefficients of

(2.4) JI—

gm — 11

=1-b+b(1 24
o +b(l+c1z 4 coz” 4 ...),

= 24 (Ay +bep)2? + (Az + bey Ag 4 beg) 2% +

both sides we have

b be?
A3 = |:CQ + 2m01 :| ’

3m —1

so that, on account of D" f(z)

(2.5) gy = — 24

o T 3n<3£ 5 |:CQ + e 1)(:?} :

Taking into account (2.5) and Lemma 2.1, we obtain

| 21t
= || = 1y
and
_ b A 2m-1)+2 ,
il = [y |2 5 + D g
b l % e =1+, |]
- 3m _ (2m _ 1) 1
- 1) +2) - (2"
=] ot ]
2|b\ (2™ —1)+2b] — (2™ - 1)
= m - " {1 o e
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Thus
21b 2m —1 2b
(2.6) lag| < 2L e {4, 17 =D 2]
3n(3m —1) (2m —1)
Moreover
- 22n (2*”71)(12 _ b {C N b 62] 3 b2el 227 (2™ — 1)
PTUBeEm 1) T 3@ 1) | @m D) eem — 1) 3n(3™ - 1)
_ bCQ
T 37(3m — 1)
21b|
= 3n(3m —1)’
as asserted. O

Remark 2.3. Putting b = 1—« in the above theorem we get the following corollary.

Corollary 2.4. Let n,m >0 . If f of the form (1.1) is in A (n,m, ), then

= 3n(3m 1) (2m —1)
and
22n(2m —1) 2(1-a)
T am—1) 2| = B3 1)

Remark 2.5. In the above Theorem 2.2 and Corollary 2.4 a special case of Fekete-
Szego problem e.g. for real p = 227 (2™ — 1) /37(3™ — 1) occurred very naturally
and simple estimate was obtained.

Now, we consider functional ’(Ig — ua%‘ for complex .

Theorem 2.6. Let b be a non-zero complex number and let f € U,, ,(b). Then for

weC

2 n(3m _q
Py 2 g 3B

@ =1 nem 1P

a2l )
’ag uaz‘_gn(gmil)max ,

For each v there is a function in ¥, ,,,(b) such that equality holds.
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Proof. Applying (2.5) we have

) b P 2] b2
az — pay; = ————— [0+ ———cf| —p——————
PR e [P e -0 T Paeen )P
b [ b, nEm—1)
= ot ——— b T
33— |2 @ )T e —p”
b 2 &2 2b 3n(3m — 1)
= -2+ 201 —2ub .
e -0 |72 e T e P
Then, with the aid of Lemma 2.1, we obtain
2 2
2 0] lea|” el 2b 3"(3™ —1)
ag — pa3| < 2 — + 1+ 9
3 — | 3n(3m — 1) [ 2 2 em—1) M 27 (2 — 1)

_ I s AP A C AtV

BT (” e =1 e 1P 1)]
2 |b| 2 3"(3m —1)

. sn(smnm{l’ e M ren P }

An examination of the proof shows that equality is attained for the first case, when
c1 =0, co = 2, then the functions in ¥, ,,, () is given by

D"t f(z) 14 (20—1)z
Dnf(z) 1—z

and, for the second case, when ¢; = c5 = 2, so that

D"t f(z) 1+ (20— 1)z
Dnf(z) 1—2 ’

respectively. O

(2.7)

(2.8)

Remark 2.7. Putting b = 1—« in the above theorem we get the following corollary.

Corollary 2.8. Let f € A(n,m,«a). Then for u € C

2(1 — )
(2m—1)

3n(3m — 1)

tr 22 )P

—2u(l — )

2(l —«
ag—uag{ < 371((3“1_)1)max{1,

For each p there is a function in A (n,m,«) such that equality holds.

We next consider the case, when p and b are real. Then we have:
Theorem 2.9. Let b > 0 and let f € Uy, ,,(b) . Then for p € R we have

niom _ . 2n fom _
371(327‘2,1) |:]~ + (277%51) (1 - M%)] Zf 12 S %7
2 b e 227 (2™ 1) 227 (2™ —1)[(2™ —1)+2b]
|as — paz| < grEe f Fgm—n < BS T SEREeo.

2b 37 (3" —1) 2 . 227 (2™ _1)[(2™ —1)+2b]
3 (3m—1) [Zl‘b[zn(zmq)]? 1= GG if pz 26[37 (3m —1)].
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For each there is a function in U, ,,(b) such that equality holds.

22 (2m 1)
37 (3m—1)

2 ) |C1|2 \C1|2 2% 3n(3m — 1)
|a3 - ,Uaz| < 3n(3m —1) lQ S22 + 2 <1 " (n-1) 2ﬂb[2n(2m_1)]z>]

Proof. First, let pu < In this case, (2.5) and Lemma 2.1 give

2 2 3n(3m — 1)
< 1 1-— .
RERCEESY [ BECEEY ( o = 1))]
Let, now % <p< 2271'(2;[;?([3(3":)1]”2!’]. Then, using the above calculations,
we obtain
as — ,uazy < L
3 21 =3n@3m 1)

. . 2n gm _ ™
Finally, if p > 2 (2%[3,1)([3(72"_1)1]”26], then

b el el 3n(3m — 1) 2b
as — pail < 2 — + 2ub -1-
3 2| = 3n(3m — 1) 92 2 H [2n(2m — 1))? (2m —1)

B b [ el 3"(3m 1) . 2
B (2“b[2n<2m—1>]2 ] <2’”—1>>]
2 [ 3rEmo1) 2 ]

3n(@3m—1) 240 2n(2m — 1)) o (2m-1)

<

Equality is attained for the second case on choosing ¢; = 0,¢y = 2 in (2.7) and in
(2.8) by choosing ¢; = 2,¢0 = 2 and ¢; = 2i,co = —2 for the first and third case,
respectively. Thus the proof is complete. O
Remark 2.10. Put b = 1 — « in the above theorem we get the following corollary.

Corollary 2.11. Let f € A(n,m,«) . Then for u € R we have

2(1—a) 2(1—a) 3" (3m—1) . 221 (2m 1)
3n(3m 1) [1 + 2m—1) (1 - Hm)] ZJ; n< Bn(3m_1)
’a3 - ,LLCL§| S 371,((13% Zf % S [ z 2((12,(3‘;[;)71[?377;'—,11_)]%&]
2(1—a) 3" (3™ 1) 2(1—a) | 221 (2™ —1)[2™ +1—2q]
37 (3Mm—1) EQ.LL (1 - a) 27 (2m—1)]2 -1- (2m,1)i| Zf K > 2(1—a)[3" (3™ —1)].

For each there is a function in A (n,m,a) such that equality holds.
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