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Abstract. For a non-zero complex number b and for m and n in N0 = {0, 1, 2, ...}
let Ψn,m(b) denote the class of normalized univalent functions f satisfying the condition

<
[
1 + 1

b

(
Dn+mf(z)
Dnf(z)

− 1
)]

> 0 in the unit disk U , where Dnf(z) denotes the Salagean

operator of f . Sharp bounds for the Fekete-Szegö functional |a3 − µa22| are obtained.

1. Introduction

Fekete and Szegö proved the remarkable result that the estimate∣∣a3 − λa2
2

∣∣ ≤ 1 + 2 exp(
−2λ

1− λ
)

holds with 0 ≤ λ ≤ 1 for any normalized univalent function

(1.1) f(z) = z + a2z
2 + a3z

3 + ...

in the open unit disk U . This inequality is sharp for all λ (see [7]). The coefficient
functional

φ (f(z)) = a3 − λa2
2 =

1

6
(f ′′′(0)− 3λ

2
[f ′′(0)]

2
)

in the unit disk represents various geometric quantities. For example, when λ = 1,
φ (f(z)) = a3 − λa2

2 becomes Sf (0)/6 where Sf denotes the Schwarzian derivative
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(f ′′/f ′)′−(f ′′/f ′)2/2. Note that, if we consider the nth root transform [f(zn)]
1/n

=
z + cn+1z

n+1 + c2n+1z
2n+1 + ... of f with the power series (1.1), then cn+1 = a2/n

and c2n+1 = a3/n+ (n− 1)a2
2/2n

2, so that

a3 − λa2
2 = n(c2n+1 − µc2n+1),

where µ = λn + (n − 1)/2. Moreover, φ (f(z)) behaves well with respect to the
rotation, namely φ

(
(e−iθf(eiθz)

)
= e2iθφ(f), for θ ∈ R.

This is quite natural to discuss the behavior of φ (f(z)) for subclasses of normal-
ized univalent functions in the unit disk. This is called the Fekete-Szegö problem.
Many authors have considered this problem for typical classes of univalent functions
(see, for instance [1, 2]).

We denote by A the set of all functions of the from (1.1) that are normalized
analytic and univalent in the unit disk U . Also, for 0 ≤ α < 1, let S∗(α) and C(α)
denote the classes of starlike and convex univalent functions of order α, respectively,
i.e., let

(1.2) S∗(α) =

{
f(z) ∈ A : <

(
zf ′(z)

f(z)

)
> α, z ∈ U

}
and

(1.3) C(α) =

{
f(z) ∈ A : <

(
1 +

zf ′′(z)

f ′(z)

)
> α, z ∈ U

}
.

The notions of α-starlikeness and α-convexity were generalized onto a complex
order by Nasr and Aouf [4], Wiatrowski [8], and Nasr and Aouf [3].

Observe that S∗(0) = S∗ and C(0) = C represent standard starlike and convex
univalent functions, respectively.

Let f(z) = z +
∑∞
k=2 akz

k and g(z) = z +
∑∞
k=2 bkz

k be analytic functions in
U. The Hadamard product (convolution) of f and g, denoted by f ∗ g is defined by

(f ∗ g)(z) = z +

∞∑
k=2

akbkz
k, z ∈ U.

For a function f(z) in A, we define

D0f(z) = f(z),

D1f(z) = Df(z) = zf ′(z)

and
Dnf(z) = D(Dn−1f(z)), n ∈ N = {0, 1, 2, ...} .

With the above operator Dn, we say that a function f(z) belonging to A is in the
class A (n,m,α) if and only if

(1.4) <
{
Dn+mf(z)

Dnf(z)

}
> α (n,m ∈ N0 = N ∪ {0})
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for some α (0 ≤ α < 1), and for all z ∈ U .
We note that A (0, 1, α) = S∗(α) is the class of starlike functions of order α,

A (1, 1, α) = C(α) is the class of convex functions of order α, and that A (1, 0, α) =
An(α) is the class of functions defined by Salagean [6].

Definition 1.1. Let b be a nonzero complex number, and let f be an univalent
function of the form (1.1), such that Dn+mf(z) 6= 0 for z ∈ U\ {0} . We say that f
belongs to Ψn,m(b) if

(1.5) <
{

1 +
1

b

(
Dn+mf(z)

Dnf(z)
− 1

)}
> 0, z ∈ U.

By giving specific values to n,m and b, we obtain the following important
subclasses studied by various researchers in earlier works, for instance, Ψ1,0(b) =
S∗(1 − b) (Nasr and Aouf [4]), Ψ1,1(b) = C(1 − b) (Wiatrowski [8], Nasr and Aouf
[3]).

2. Main Results

We denote by P class of the analytic functions in U with p(0) = 1 and
< (p(z)) > 0. We shall require the following:

Lemma 2.1.([5], p.166) Let p ∈ P with p(z) = 1 + c1z + c2z
2 + ..., then

|cn| ≤ 2, for n ≥ 1.

If |c1| = 2 then p(z) ≡ p1(z) = (1 + γ1z)/(1− γ1z) with γ1 = c1/2. Conversely,
if p(z) ≡ p1(z) for some |γ1| = 1, then c1 = 2γ1 and |c1| = 2. Furthermore we have∣∣∣∣c2 − c21

2

∣∣∣∣ ≤ 2− |c1|
2
.

If |c1| < 2 and
∣∣∣c2 − c21

2

∣∣∣ = 2− |c1|2 , then p(z) ≡ p2(z), where

p2(z) =
1 + γ2z+γ1

1+γ̄1+γ2z

1− γ2z+γ1
1+γ̄1+γ2z

,

and γ1 = c1/2, γ2 =
2c2−c21
4−|c1|2

. Conversely if p(z) ≡ p2(z) for some |γ1| < 1 and

|γ2| = 1, then γ1 = c1/2, γ2 =
2c2−c21
4−|c1|2

and
∣∣∣c2 − c21

2

∣∣∣ = 2− |c1|2 .

Theorem 2.2. Let n,m ≥ 0 and let b be non-zero complex number. If f of the
form (1.1) is in Ψn,m(b), then

(2.1) |a2| ≤
2 |b|

2n(2m − 1)
,
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(2.2) |a3| ≤
2 |b|

3n(3m − 1)
max

{
1,
|(2m − 1) + 2b|

(2m − 1)

}
,

and ∣∣∣∣a3 −
22n (2m − 1)

3n(3m − 1)
a2

2

∣∣∣∣ ≤ 2 |b|
3n(3m − 1)

.

Equality in (2.1) holds if Dn+mf(z)/Dnf(z) = 1 + b [p1(z)− 1] , and in (2.2) if
Dn+mf(z)/Dnf(z) = 1 + b [p2(z)− 1] , where p1, p2 are given in Lemma 2.1.

Proof. Denote F (z) = Dnf(z) = z + A2z
2 + A3z

3 + ..., DmF (z) = Dn+mf(z) =
z + 2mA2z

2 + 3mA3z
3 + ..., where A2 = 2na2 and A3 = 3na3, ...., then

(2.3) 2mA2 = 2n+ma2, 3mA3 = 3n+ma3.

By the definition of the class Ψn,m(b) there exists p ∈ P such that DmF (z)
F (z) =

1− b+ bp(z), so that

z + 2mA2z
2 + 3mA3z

3 + ...

z +A2z2 +A3z3 + ...
= 1− b+ b(1 + c1z + c2z

2 + ...),

which implies the equality

z + 2mA2z
2 + 3mA3z

3 + ... = z + (A2 + bc1)z2 + (A3 + bc1A2 + bc2)z3 + ...

Equating the coefficients of both sides we have

(2.4) A2 =
b

2m − 1
c1, A3 =

b

3m − 1

[
c2 +

bc21
2m − 1

]
,

so that, on account of Dn+mf(z)

(2.5) a2 =
bc1

2n(2m − 1)
, a3 =

b

3n(3m − 1)

[
c2 +

b

(2m − 1)
c21

]
.

Taking into account (2.5) and Lemma 2.1, we obtain

|a2| =
∣∣∣∣ b

2n(2m − 1)
c1

∣∣∣∣ ≤ 2 |b|
2n(2m − 1)

,

and

|a3| =
∣∣∣∣ b

3n(3m − 1)

[
c2 −

c21
2

+
(2m − 1) + 2b

2 (2m − 1)
c21

]∣∣∣∣
≤ |b|

3n(3m − 1)

[
2−

∣∣c21∣∣
2

+
|(2m − 1) + 2b|

2 (2m − 1)

∣∣c21∣∣
]

=
|b|

3n(3m − 1)

[
2 +
|(2m − 1) + 2b| − (2m − 1)

2 (2m − 1)

∣∣c21∣∣]
≤ 2 |b|

3n(3m − 1)
max

{
1, 1 +

|(2m − 1) + 2b| − (2m − 1)

(2m − 1)

}
.
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Thus

(2.6) |a3| ≤
2 |b|

3n(3m − 1)
max

{
1,
|(2m − 1) + 2b|

(2m − 1)

}
.

Moreover∣∣∣∣a3 − 22n (2m − 1)

3n(3m − 1)
a22

∣∣∣∣ =

∣∣∣∣ b

3n(3m − 1)

[
c2 +

b

(2m − 1)
c21

]
− b2c21

[2n(2m − 1)]2
22n (2m − 1)

3n(3m − 1)

∣∣∣∣
=

∣∣∣∣ bc2
3n(3m − 1)

∣∣∣∣
≤ 2 |b|

3n(3m − 1)
,

as asserted. 2

Remark 2.3. Putting b = 1−α in the above theorem we get the following corollary.

Corollary 2.4. Let n,m ≥ 0 . If f of the form (1.1) is in A (n,m,α), then

|a2| ≤
2 (1− α)

2n(2m − 1)
,

|a3| ≤
2 (1− α)

3n(3m − 1)
max

{
1,

(2m + 1− 2α)

(2m − 1)

}
,

and ∣∣∣∣a3 −
22n (2m − 1)

3n(3m − 1)
a2

2

∣∣∣∣ ≤ 2 (1− α)

3n(3m − 1)
.

Remark 2.5. In the above Theorem 2.2 and Corollary 2.4 a special case of Fekete-
Szegö problem e.g. for real µ = 22n (2m − 1) /3n(3m − 1) occurred very naturally
and simple estimate was obtained.

Now, we consider functional
∣∣a3 − µa2

2

∣∣ for complex µ.

Theorem 2.6. Let b be a non-zero complex number and let f ∈ Ψn,m(b). Then for
µ ∈ C

∣∣a3 − µa2
2

∣∣ ≤ 2 |b|
3n(3m − 1)

max

{
1,

∣∣∣∣∣1 +
2b

(2m − 1)
− 2µb

3n(3m − 1)

[2n(2m − 1)]
2

∣∣∣∣∣
}
.

For each µ there is a function in Ψn,m(b) such that equality holds.
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Proof. Applying (2.5) we have

a3 − µa2
2 =

b

3n(3m − 1)

[
c2 +

b

(2m − 1)
c21

]
− µ b2c21

[2n(2m − 1)]
2

=
b

3n(3m − 1)

[
c2 +

b

(2m − 1)
c21 − µb

3n(3m − 1)

[2n(2m − 1)]
2 c

2
1

]

=
b

3n(3m − 1)

[
c2 −

c21
2

+
c21
2

(
1 +

2b

(2m − 1)
− 2µb

3n(3m − 1)

[2n(2m − 1)]
2

)]
.

Then, with the aid of Lemma 2.1, we obtain∣∣a3 − µa2
2

∣∣ ≤ |b|
3n(3m − 1)

[
2− |c1|

2

2
+
|c1|2

2

∣∣∣∣∣1 +
2b

(2m − 1)
− 2µb

3n(3m − 1)

[2n(2m − 1)]
2

∣∣∣∣∣
]

=
|b|

3n(3m − 1)

[
2 +
|c1|2

2

(∣∣∣∣∣1 +
2b

(2m − 1)
− 2µb

3n(3m − 1)

[2n(2m − 1)]
2

∣∣∣∣∣− 1

)]

≤ 2 |b|
3n(3m − 1)

max

{
1,

∣∣∣∣∣1 +
2b

(2m − 1)
− 2µb

3n(3m − 1)

[2n(2m − 1)]
2

∣∣∣∣∣
}
.

An examination of the proof shows that equality is attained for the first case, when
c1 = 0, c2 = 2, then the functions in Ψn,m(b) is given by

(2.7)
Dn+mf(z)

Dnf(z)
=

1 + (2b− 1)z

1− z
,

and, for the second case, when c1 = c2 = 2, so that

(2.8)
Dn+mf(z)

Dnf(z)
=

1 + (2b− 1)z2

1− z
,

respectively. 2

Remark 2.7. Putting b = 1−α in the above theorem we get the following corollary.

Corollary 2.8. Let f ∈ A (n,m,α) . Then for µ ∈ C

∣∣a3 − µa2
2

∣∣ ≤ 2 (1− α)

3n(3m − 1)
max

{
1,

∣∣∣∣∣1 +
2(1− α)

(2m − 1)
− 2µ(1− α)

3n(3m − 1)

[2n(2m − 1)]
2

∣∣∣∣∣
}
.

For each µ there is a function in A (n,m,α) such that equality holds.

We next consider the case, when µ and b are real. Then we have:

Theorem 2.9. Let b > 0 and let f ∈ Ψn,m(b) . Then for µ ∈ R we have

∣∣a3 − µa22∣∣ ≤


2b
3n(3m−1)

[
1 + 2b

(2m−1)

(
1− µ 3n(3m−1)

22n(2m−1)

)]
if µ ≤ 22n(2m−1)

3n(3m−1)
,

b
3n(3m−1)

if 22n(2m−1)
3n(3m−1)

≤ µ ≤ 22n(2m−1)[(2m−1)+2b]
2b[3n(3m−1)],

2b
3n(3m−1)

[
2µb 3n(3m−1)

[2n(2m−1)]2
− 1− 2b

(2m−1)

]
if µ ≥ 22n(2m−1)[(2m−1)+2b]

2b[3n(3m−1)].
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For each there is a function in Ψn,m(b) such that equality holds.

Proof. First, let µ ≤ 22n(2m−1)
3n(3m−1) In this case, (2.5) and Lemma 2.1 give

∣∣a3 − µa2
2

∣∣ ≤ b

3n(3m − 1)

[
2− |c1|

2

2
+
|c1|2

2

(
1 +

2b

(2m − 1)
− 2µb

3n(3m − 1)

[2n(2m − 1)]
2

)]

≤ 2b

3n(3m − 1)

[
1 +

2b

(2m − 1)

(
1− µ 3n(3m − 1)

22n(2m − 1)

)]
.

Let, now 22n(2m−1)
3n(3m−1) ≤ µ ≤

22n(2m−1)[(2m−1)+2b]
2b[3n(3m−1)] . Then, using the above calculations,

we obtain ∣∣a3 − µa2
2

∣∣ ≤ b

3n(3m − 1)
.

Finally, if µ ≥ 22n(2m−1)[(2m−1)+2b]
2b[3n(3m−1)] , then

∣∣a3 − µa2
2

∣∣ ≤ b

3n(3m − 1)

[
2− |c1|

2

2
+
|c1|2

2

(
2µb

3n(3m − 1)

[2n(2m − 1)]
2 − 1− 2b

(2m − 1)

)]

=
b

3n(3m − 1)

[
2 +
|c1|2

2

(
2µb

3n(3m − 1)

[2n(2m − 1)]
2 − 2− 2b

(2m − 1)

)]

≤ 2b

3n(3m − 1)

[
2µb

3n(3m − 1)

[2n(2m − 1)]
2 − 1− 2b

(2m − 1)

]
.

Equality is attained for the second case on choosing c1 = 0, c2 = 2 in (2.7) and in
(2.8) by choosing c1 = 2, c2 = 2 and c1 = 2i, c2 = −2 for the first and third case,
respectively. Thus the proof is complete. 2

Remark 2.10. Put b = 1−α in the above theorem we get the following corollary.

Corollary 2.11. Let f ∈ A (n,m,α) . Then for µ ∈ R we have

∣∣a3 − µa22∣∣ ≤


2(1−α)
3n(3m−1)

[
1 + 2(1−α)

(2m−1)

(
1− µ 3n(3m−1)

22n(2m−1)

)]
if µ ≤ 22n(2m−1)

3n(3m−1)
,

(1−α)
3n(3m−1)

if 22n(2m−1)
3n(3m−1)

≤ µ ≤ 22n(2m−1)[2m+1−2α]
2(1−α)[3n(3m−1)],

2(1−α)
3n(3m−1)

[
2µ (1− α) 3n(3m−1)

[2n(2m−1)]2
− 1− 2(1−α)

(2m−1)

]
if µ ≥ 22n(2m−1)[2m+1−2α]

2(1−α)[3n(3m−1)].

For each there is a function in A (n,m,α) such that equality holds.
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