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Abstract. Generalizations of essential arity of partial functions, based on essential sets

of arguments, are introduced, and their interplay with the minor relation of functions is

investigated.

1. Introduction

In many-valued logic, the theory of essential arguments of functions is a topic
that has been widely studied by many authors [2, 3, 5, 6, 7, 8, 9, 10, 14, 16]. In
1963, Salomaa [14] considered how the number of essential arguments of a Boolean
function is affected by identification of arguments. It turned out that the so-called
arity gap (i.e., the minimum decrease in the number of essential arguments when
a pair of essential arguments is identified) of any Boolean function is at most 2.
Willard [17] generalized this result in 1996. He considered the same problem for
a function f : An → B defined on arbitrary finite sets A and B. He found that if
n > |A|, then the arity gap of f is at most 2.

A function f is a minor of a function g if f can be obtained from g by the
operations of identification of arguments, permutation of arguments, introduction
of inessential arguments, and deletion of inessential arguments. Minors of functions
have been extensively investigated in the past decades [4, 5, 6, 7, 11, 12, 13]. This
concept has also been used as a tool to study threshold functions [18]. It appears
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in many papers under different names, for example, “identification minor” in [11],
“I-minor”, where I is the set containing just the identity function, in [13], “function
obtained by simple variable substitution” in [4] and “simple minor” in [6].

The number of essential arguments (essential arity) can be seen as a kind of
measure of the structural complexity of a function. It is compatible with the minor
quasiorder; the number of essential arguments of a total function does not increase
upon formation of minors. Moreover, the essentially at most unary functions are
minimal members of the minor quasiorder, and a total function is constant if and
only if it has no essential arguments. This is no longer true for partial functions.
As we will see in Section 2, in contrast to total functions, the number of essential
arguments of a partial function may increase upon formation of minors, and it is
possible that a nonconstant partial function has no essential argument. From this
standpoint, essential arity seems slightly unsatisfactory as a measure of structural
complexity for partial functions. We would like to modify this notion to be better
suitable for partial functions.

In this paper, we introduce five notions that attempt to generalize essential
arguments and essential arity to partial functions: essential argument, essential
set of arguments, minimal essential set, width of the poset of essential sets, exact
essential set. Each one of these notions gives rise to a quantity analogous to essential
arity, and we will assess each with regard to the following properties, which are useful
and desirable for a “successful” substitute of essential arity for partial functions:

(1) isotonicity with respect to the minor order,

(2) equality to 0 precisely for constant functions,

(3) coincidence with essential arity for total functions.

Introduced in Section 3, the first generalization of the notion of essential argu-
ment is that of essential set of arguments. The set of all essential sets of arguments
of a function, ordered by inclusion, forms a poset, and we take the minimal essential
sets as the second generalization of essential arguments. The next generalization
is the width of the poset of essential sets, which is considered in Section 4. We
will see that the associated quantities (essential arity, the number of essential sets,
the number of minimal essential sets, the width of the poset of essential sets) may
increase upon formation of minors, and hence do not have the desired property (1).

As a last variant of essential argument, we define the notion of exact essential
set in Section 5. The logarithm of the number of exact essential sets of a partial
function is called exact essential hyperarity. We will see that the exact essential
hyperarity of a partial function does not increase when we form minors, and it
equals 0 precisely for constant functions. Although this notion does not coincide
with essential arity for total functions, it seems a suitable measure of the structural
complexity for partial functions. We continue in Section 6 with a modification of
the arity gap in which we consider the minimum decrease in the exact essential
hyperarity of a partial function upon formation of minors. We will see that an
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analogue of Willard’s theorem does not hold for the exact hyperarity gap of partial
functions. We summarize our findings in the final Section 7.

2. Minors and Essential Arguments of Partial Functions

We denote the set of natural numbers by N := {0, 1, 2, . . .} and the set of positive
integers by N+ := {1, 2, . . .}. For n ∈ N, the set {1, . . . , n} is denoted by [n] (note
that [0] = ∅). Let A be a nonempty set and n a positive integer. The usual notation
for a tuple in An is (a1, . . . , an) where ai ∈ A for all 1 ≤ i ≤ n. We will use bold
letters to denote tuples and corresponding italic letters with subscript to denote
their components, that is, a = (a1, . . . , an). We denote the set {0, 1} by B. We
denote constant tuples (0, . . . , 0) and (1, . . . , 1) in Bn by 0 and 1, respectively.

For arbitrary sets A and B, a partial function (of several arguments) from A
to B is a function f : X → B where X ⊆ An, n ∈ N+. The number n is called
the arity of f . The set X is called the domain of f . If A = B, then f is called
a partial operation on A. Furthermore, if X = An, then f is said to be an n-ary
(total) function from A to B. We denote the set of all partial functions from A to
B by PAB and the set of all total functions from A to B by FAB .

We can view any tuple a ∈ Am as a mapping a : [m]→ A; hence, a(i) = ai for
all i ∈ [m]. Then we can compose tuples with other maps. If σ : [n]→ [m] is a map,
then the composite a ◦ σ : [n] → A is a tuple in An. For simplicity, we write aσ
instead of a ◦ σ. Any map σ : [n] → [m] gives rise to a map σ : Am → An defined
by σ(a) = aσ for all a ∈ Am.

Let X ⊆ Am and Y ⊆ An for some natural numbers m and n. A partial
function f : X → B is said to be a minor of a partial function g : Y → B if there
exists a map σ : [n] → [m] such that X = σ−1(Y ) = {a ∈ Am : aσ ∈ Y } and
f = g ◦ σ|X . The notation f ≤ g is used to designate the fact that f is a minor
of g. For notational simplicity, we omit the “domain restriction” and write simply
f = g ◦σ for f = g ◦σ|X . If we want to emphasise the map σ that makes the above
condition hold, we say that f is a minor of g (arising) via σ, briefly f ≤ g via σ.

It is not difficult to see that the minor relation ≤ is a quasiorder (a reflexive
and transitive relation) on PAB . The quasiorder ≤ on PAB induces an equivalence
relation ≡ on this set by the following: f ≡ g if and only if f ≤ g and g ≤ f . We
say that f and g are equivalent if f ≡ g. Furthermore, the quasiorder ≤ on PAB
induces a partial order ≤ on the quotient PAB/≡ by the following rule: f/≡ ≤ g/≡
if and only if f ≤ g.

Let f : X → B be a partial function, where X ⊆ An. We say that the argument
i ∈ [n] is essential in f , or f depends on argument i, if there exist tuples a =
(a1, . . . , an) and b = (b1, . . . , bn) in the domain of f such that aj = bj for all
j ∈ [n] \ {i} and f(a) 6= f(b). We call such a pair (a,b) a witness (of essentiality)
of argument i in f . We denote by Ess f the set of essential arguments of f , that is,

Ess f := {i ∈ [n] : argument i is essential in f}.

The number of essential arguments in f is called the essential arity of f and denoted
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by ess f , that is, ess f = |Ess f |.
The above definition of essential arguments is a natural and straightforward

generalization of the usual definition of essential arguments of a total function (see
[17]). For total functions, the essential arity behaves nicely with respect to minors,
as described in the following lemma.

Lemma 2.1.([12, Lemma 2.2.4]) Let f : Am → B and g : An → B be total functions
such that f ≤ g via σ. Then the following statements hold.

(i) Ess f ⊆ Imσ.

(ii) For every i ∈ Ess f , we have that σ−1(i) ∩ Ess g 6= ∅.

(iii) ess f ≤ ess g.

As shown by the following example, conditions (ii) and (iii) do not hold in
general for partial functions. Nevertheless, implication (ii) ⇒ (iii) holds also for
partial functions.

Example 2.2. Let X and Y be sets given by

X = {(0, 0), (0, 1), (1, 0)} and Y = {(0, 0, 0), (0, 0, 1), (1, 1, 0)}.

Define f : X → B and g : Y → B by

f
(0, 0) 7→ 0
(0, 1) 7→ 1
(1, 0) 7→ 1

g
(0, 0, 0) 7→ 0
(0, 0, 1) 7→ 1
(1, 1, 0) 7→ 1.

We see that f ≤ g via σ =

(
1 2 3
1 1 2

)
, Ess f = {1, 2} and Ess g = {3}. Now,

1 ∈ Ess f but σ−1(1) ∩ Ess g = {1, 2} ∩ {3} = ∅, and ess f > ess g.

Lemma 2.3.([12, Lemma 2.2.4(vi)]) Let f : Am → B, g : An → B be total functions,
and assume that f ≤ g via σ. Then f ≡ g if and only if ess f = ess g.

Fact 2.4. Let f and g be total functions. Then the following statements hold.

(i) ess f = 0 if and only if f is constant.

(ii) f < g implies ess f < ess g.

We note that Fact 2.4(ii) follows from Lemma 2.1(iii) and Lemma 2.3. These
facts do not hold for partial functions. Before giving a counterexample below, in
Example 2.5, we introduce some notation.

Let n ∈ N+. For S ⊆ [n], the characteristic tuple of S is eS := (a1, . . . , an)
where

ai =

{
1 if i ∈ S,

0 if i /∈ S,
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for every i ∈ [n].

Example 2.5. Let n ∈ N+. We define a partial function f : X → B of arity n,
where

X := {e{i} : i ∈ [n]} ∪ {0},

by

f(x) =

{
0 if x = 0,

1 if x ∈ X \ {0},

for all x ∈ X. We define a partial function g : Y → B of arity 2n, where

Y := {e{2i−1,2i} : i ∈ [n]} ∪ {0},

by

g(y) =

{
0 if y = 0,

1 if y ∈ Y \ {0},

for all y ∈ Y . Then f ≤ g via the map σ : [2n] → [n] given by σ(i) = di/2e for all
i ∈ [2n], where d·e is the ceiling function. We can further see that ess f = n and
ess g = 0.

Let f : X → B, where X ⊆ An, be a partial function and I ∈
(
[n]
2

)
, where

(
[n]
2

)
designates the set of all two-element subsets on [n]. A partial function fI : δ−1I (X)→
B defined by the rule fI(a) = f(aδI) for all a ∈ δ−1I (X), where δI : [n]→ [n− 1] is
defined as

δI(i) =


i if i < max I,

min I if i = max I,

i− 1 if i > max I,

is called an identification minor of f . In explicit terms, if I = {i, j} with i < j,
then

fI(a1, . . . , an−1) = f(a1, . . . , aj−1, ai, aj , . . . , an−1)

for all (a1, . . . , an−1) ∈ δ−1I (X).
The identification minors fI are perhaps the most relevant among all minors

of f , because every minor of f is equivalent to one that is obtained by succes-
sively identifying just a single pair of arguments at a time (see [12, Lemma 2.2.11,
Fact 2.2.12]). As illustrated by Example 2.5, the essential arity of a minor of a
partial function can be much larger than the essential arity of the given function
itself. On the other hand, Proposition 2.7 below shows that the essential arity
can only increase by at most 1 when a single pair of arguments is identified. The
large increase in the essential arity seen in Example 2.5 is possible because many
arguments are identified.

Lemma 2.6. Let f be a partial function of arity n and I ∈
(
[n]
2

)
. If k ∈ Ess fI\δI(I),

then δ−1I (k) ∈ Ess f \ I.
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Proof. Let k ∈ Ess fI \ δI(I) and let (a,b) be a witness of essentiality of argument
k in fI . Then aδI = c and bδI = d for some c,d ∈ X. That is,

(c1, . . . , cn) = (aδI(1), . . . , aδI(n))

and
(d1, . . . , dn) = (bδI(1), . . . , bδI(n)).

Since k ∈ Ess fI , we have that al = bl for all l ∈ [n− 1] \ {k}. Then aδI(p) = bδI(p)
for all p ∈ [n] \ {δ−1I (k)}. Thus, cr = dr for all r ∈ [n] \ {δ−1I (k)}. Then f(c) =
f(aδI) = fI(a) 6= fI(b) = f(bδI) = f(d). This shows that (c,d) is a witness of
essentiality of argument δ−1I (k) in f . Since k /∈ δI(I), we have that δ−1I (k) /∈ I.
Thus, δ−1I (k) ∈ Ess f \ I. 2

Proposition 2.7. Let f be a partial function of arity n and I ∈
(
[n]
2

)
. Then

ess fI ≤ ess f + 1.

Proof. By Lemma 2.6, we have

ess fI ≤ |Ess fI \ δI(I)|+ 1 ≤ |Ess f \ I|+ 1 ≤ ess f + 1. 2

Note that Example 2.2 shows that the inequality in Proposition 2.7 can hold as
an equality.

Let X ⊆ Am, Y ⊆ An, f : X → B, g : Y → B and f ≤ g via σ. Let i ∈ Ess f .
Note that σ−1(i) is a nonempty set since Ess f ⊆ Imσ. Let ≤ be a linear order
of the set σ−1(i), say σ−1(i) = {l1, . . . , lr} with l1 < l2 < · · · < lr. For each
i ∈ Ess f and a witness of essentiality (a,b) of the i-th argument in f , we define

C
(a,b)
≤ (i) := {c0, c1, . . . , cr}, where

(i) c0 := aσ,

(ii) for each j = 1, . . . , r, let cj be the tuple obtained from cj−1 by changing the
lj-th entry from ai to bi.

Lemma 2.8. Let X ⊆ Am, Y ⊆ An, f : X → B, g : Y → B and f ≤ g via
σ. For each i ∈ Ess f , if there exists a witness (a,b) of essentiality of the i-th

argument of f and for some linear order ≤ of σ−1(i) it holds that C
(a,b)
≤ (i) ⊆ Y ,

then σ−1(i) ∩ Ess g 6= ∅.
Proof. Let i ∈ Ess f . Then by Lemma 2.1(i), σ−1(i) 6= ∅. Suppose that σ−1(i) =
{l1, . . . , lr} with l1 < l2 < · · · < lr. Let a,b ∈ X be a witness of essentiality of the
i-th argument in f . By our procedure, we have that c0, c1, . . . , cr ∈ An, c0 = aσ
and cr = bσ. By our assumption, we now know that c0, c1, . . . , cr ∈ Y . Then

g(aσ) = f(a) 6= f(b) = g(bσ).

That is, there exists k ∈ {0, . . . , r − 1} such that g(ck) 6= g(ck+1). This means
that ck and ck+1 witness the essentiality of the lk+1-th argument in g. Thus,
lk+1 ∈ Ess g. That is, σ−1(i) ∩ Ess g 6= ∅. 2
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The following example shows that the converse of Lemma 2.8 does not hold.

Example 2.9. Let X and Y be sets given by

X = {(0, 0, 0), (0, 1, 0), (0, 0, 1)}

and

Y = {(0, 0, 0, 0, 0), (0, 1, 1, 1, 0), (0, 0, 0, 0, 1), (0, 1, 0, 0, 1), (0, 1, 0, 1, 1)}.

Define f : X → B and g : Y → B by

f
(0, 0, 0) 7→ 0
(0, 1, 0) 7→ 1
(0, 0, 1) 7→ 1

g
(0, 0, 0, 0, 0) 7→ 0
(0, 1, 1, 1, 0) 7→ 1
(0, 0, 0, 0, 1) 7→ 1
(0, 1, 0, 0, 1) 7→ 0
(0, 1, 0, 1, 1) 7→ 1.

Then f ≤ g via σ =

(
1 2 3 4 5
1 2 2 2 3

)
. Now, σ−1(2)∩Ess g = {2, 3, 4}∩{4, 5} 6= ∅

and σ−1(3)∩Ess g = {5} ∩ {4, 5} 6= ∅. But for 2 ∈ Ess f , C
((0,0,0),(0,1,0))
≤ (2) 6⊆ Y for

every linear order ≤ on σ−1(2).

Corollary 2.10. Let X ⊆ Am, Y ⊆ An, f : X → B, g : Y → B and f ≤ g via
σ. For each i ∈ Ess f , if there exists a witness (a,b) of essentiality of the i-th

argument of f and for some linear order ≤ of σ−1(i) it holds that C
(a,b)
≤ (i) ⊆ Y ,

then ess f ≤ ess g.

Proof. Apply Lemma 2.1 and Lemma 2.8. 2

3. Essential Sets of Arguments

Essential arguments do not seem to adequately describe the behaviour of partial
functions. A partial function might be very complex yet it depends on very few
arguments. In particular, in stark contrast to total functions, the essential arity of
partial functions can increase when minors are formed and a non-constant function
might be essentially nullary (see Fact 2.4 and Examples 2.2 and 2.5).

In this section, we define an alternative notion of “essentiality” that would
better express the idea of dependence of a (partial) function on several arguments
collectively, not just on a single argument.

Definition 3.1. Let f : X → B with X ⊆ An be a partial function. A subset
S ⊆ [n] is essential in f if there exist tuples a,b ∈ X such that ai = bi for all
i ∈ [n] \ S and f(a) 6= f(b).

The pair (a,b) is called a witness of essentiality of S in f . We denote the
collection of essential sets in f by ES(f) and es f := |ES(f)|.
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A set M ∈ ES(f) is called a minimal element of ES(f) if N ⊆ M implies
M = N for all N ∈ ES(f). We denote the set of all minimal elements of ES(f) by
MES(f) and we set mes(f) := |MES(f)|. We can see that for every partial function
f , ES(f) is an upper set of (P([n]);⊆).

These notions seem reasonable because for total functions they coincide with
the classical notion of essential arguments. More generally, for a partial function
f : X → B with X ⊆ An and i ∈ [n] the following are equivalent:

(1) argument i is essential in f .

(2) {i} is an essential set in f .

(3) {i} is a minimal essential set in f .

Example 3.2. Let X = {(0, 0, 0), (0, 0, 1), (1, 1, 0)}. Define f : X → B by

f
(0, 0, 0) 7→ 0
(0, 0, 1) 7→ 1
(1, 1, 0) 7→ 1.

Then {3}, {1, 2}, {1, 3}, {2, 3} and {1, 2, 3} are essential sets in f . Hence, MES(f) =
{{3}, {1, 2}} and mes(f) = 2.

Recall from Lemma 2.1 that for total functions f and g, ess f ≤ ess g whenever
f ≤ g; moreover, ess f = mes(f) and ess g = mes(g), that is, mes(f) ≤ mes(g)
whenever f ≤ g. In contrast, for partial functions if f is a minor of g, then it does
not necessarily hold that mes(f) ≤ mes(g), as shown by the following example.

Example 3.3. Let X and Y be sets given by

X = {(0, 0, 0, 0), (1, 1, 1, 0), (0, 1, 1, 1)}

and
Y = {(0, 0, 0, 0, 0), (0, 1, 0, 0, 0), (1, 1, 1, 1, 0), (0, 1, 1, 1, 1)}.

Define f : X → B and g : Y → B by

f
(0, 0, 0, 0) 7→ 0
(1, 1, 1, 0) 7→ 1
(0, 1, 1, 1) 7→ 1

g
(0, 0, 0, 0, 0) 7→ 0
(0, 1, 0, 0, 0) 7→ 1
(1, 1, 1, 1, 0) 7→ 1
(0, 1, 1, 1, 1) 7→ 1.

Then f ≤ g via σ =

(
1 2 3 4 5
1 2 2 3 4

)
.

Now, we see that MES(f) = {{1, 2, 3}, {2, 3, 4}} and MES(g) = {{2}}, that is,
mes(f) = 2 > 1 = mes(g).
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Lemma 3.4. Let X ⊆ Am, Y ⊆ An, f : X → B, g : Y → B and f ≤ g via σ. We
have that for all S ⊆ [m], if S ∈ ES(f), then σ−1(S) ∈ ES(g).

Proof. Let S ⊆ [m] be such that S ∈ ES(f). Then there exist a,b ∈ X such that
(a,b) is a witness of essentiality of S in f . Let c := aσ and d := bσ. Then

(aσ(1), . . . , aσ(n)) = (c1, . . . , cn),

(bσ(1), . . . , bσ(n)) = (d1, . . . , dn).

Since ai = bi for all i ∈ [m] \ S, we have that aσ(i) = bσ(i) for all i ∈ [n] \ σ−1(S).
Thus, ci = di for all i ∈ [n] \ σ−1(S); moreover,

g(c) = g(aσ) = f(a) 6= f(b) = g(bσ) = g(d).

We conclude that the pair (c,d) is a witness of essentiality of σ−1(S) in g. That is,
σ−1(S) ∈ ES(g). 2

We observe that the converse of Lemma 3.4 does not hold as shown by Example
3.3. In fact, if we let S = {2}, then σ−1(S) = {2, 3} ∈ ES(g) but S /∈ ES(f). On
the other hand, if S ∈ ES(g), then it is not necessarily true that σ(S) ∈ ES(f) by
Example 3.3. Moreover, if S is a minimal essential set in f , then σ−1(S) may not
be a minimal essential set in g, as shown by the following example.

Example 3.5. Let X and Y be sets given by

X = {(0, 0, 0), (1, 1, 0), (0, 1, 1)}

and
Y = {(0, 0, 0, 0), (1, 1, 1, 0), (0, 0, 1, 1), (1, 0, 0, 0)}.

Define f : X → B and g : Y → B by

f
(0, 0, 0) 7→ 0
(1, 1, 0) 7→ 1
(0, 1, 1) 7→ 1

g
(0, 0, 0, 0) 7→ 0
(1, 1, 1, 0) 7→ 1
(0, 0, 1, 1) 7→ 1
(1, 0, 0, 0) 7→ 1.

Then f ≤ g via σ =

(
1 2 3 4
1 1 2 3

)
. Now, we can see that MES(f) = {{1, 2}, {2, 3}}

and MES(g) = {{1}, {3, 4}}. It is clear that {1, 2} ∈ MES(f) but σ−1({1, 2}) =
{1, 2, 3} /∈ MES(g).

The above examples show that the number of minimal essential sets may in-
crease or decrease upon formation of minors. It is not clear to us under which
conditions this quantity is nonincreasing.

Open problem 1. Provide necessary and sufficient conditions for functions f and
g with f ≤ g to satisfy mes(f) ≤ mes(g).
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As a partial answer to the above problem, the following theorem provides a
sufficient condition.

Theorem 3.6. Let f and g be partial functions such that f ≤ g via σ. Assume
that σ−1(S) ∈ MES(g) for all S ∈ MES(f). Then mes(f) ≤ mes(g).

Proof. The map σ−1 : MES(f) → MES(g) is clearly injective, which implies
mes(f) ≤ mes(g). 2

Next, we introduce a particular kind of minor that forces the hypothesis of
Theorem 3.6. Let f : X → B and g : Y → B, where X ⊆ Am and Y ⊆ An, be
partial functions. A partial function f is said to be a surjective minor of a partial
function g if f ≤ g via σ for some σ : [n] → [m], and for every a ∈ Y , there exists
b ∈ X such that bσ = a; in other words, the map σ|X : X → Y is surjective. We
designate the fact that f is a surjective minor of g by f ≤s g, or if we want to
specify a map σ, we write f ≤s g via σ.

Example 3.7. Let X and Y be sets given by

X = {(0, 0), (0, 1), (1, 0)} and Y = {(0, 0, 0), (0, 0, 1), (1, 1, 0)}.

Define f : X → B and g : Y → B by

f
(0, 0) 7→ 0
(0, 1) 7→ 1
(1, 0) 7→ 1

g
(0, 0, 0) 7→ 0
(0, 0, 1) 7→ 1
(1, 1, 0) 7→ 1.

Then f ≤ g via σ =

(
1 2 3
1 1 2

)
. We consider (0, 0, 0) = (0, 0)σ, (0, 0, 1) = (0, 1)σ

and (1, 1, 0) = (1, 0)σ. Thus, f ≤s g via σ.

Example 3.8. Let X and Y be sets given by

X = {(0, 0, 0), (0, 1, 0), (0, 0, 1)}

and
Y = {(0, 0, 0, 0), (0, 1, 1, 0), (0, 0, 1, 0), (0, 0, 0, 1)}.

Define f : X → B and g : Y → B by

f
(0, 0, 0) 7→ 0
(0, 1, 0) 7→ 1
(0, 0, 1) 7→ 1

g
(0, 0, 0, 0) 7→ 0
(0, 1, 1, 0) 7→ 1
(0, 0, 1, 0) 7→ 1
(0, 0, 0, 1) 7→ 1.

Then f ≤ g via σ =

(
1 2 3 4
1 2 2 3

)
. Non-surjectivity is obvious for cardinality

reasons. This shows that f is not a surjective minor of g.
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Lemma 3.9. Let f and g be partial functions such that f ≤s g via σ. If S ∈ ES(g),
then σ(S) ∈ ES(f).

Proof. Since S ∈ ES(g), there exist a,b ∈ Y such that (a,b) is a witness of
essentiality of S in g. By assumption there exist c,d ∈ X such that cσ = a and
dσ = b, that is,

(cσ(1), . . . , cσ(n)) = (a1, . . . , an),

(dσ(1), . . . , dσ(n)) = (b1, . . . , bn).

Since ai = bi for all i ∈ [n] \ S, we have that cσ(i) = dσ(i) for all i ∈ [n] \ S. This
implies that ci = di for all i ∈ [m] \ σ(S); moreover,

f(c) = g(cσ) = g(a) 6= g(b) = g(dσ) = f(d).

Therefore, (c,d) is a witness of essentiality of σ(S) in f , that is, σ(S) ∈ ES(f). 2

Proposition 3.10. Let f and g be partial functions such that f ≤s g via σ. If
S ∈ MES(g), then σ(S) ∈ MES(f).

Proof. Let S ∈ MES(g). Then by Lemma 3.9, σ(S) ∈ ES(f). Suppose that there
exists K ∈ MES(f) such that K ⊆ σ(S). Then by Lemma 3.4, σ−1(K) ∈ ES(g) and
σ−1(K) ⊆ S. By the minimality of S, we obtain that σ−1(K) = S. This implies
that K = σ(S). Therefore, σ(S) ∈ MES(f). 2

Proposition 3.11. Let f and g be partial functions such that f ≤s g via σ. If
S ∈ MES(f), then σ−1(S) ∈ MES(g).

Proof. Since S ∈ MES(f), by Lemma 3.4 we have that σ−1(S) ∈ ES(g). Suppose
that there exists K ∈ MES(g) such that K ⊆ σ−1(S). Then σ(K) ∈ MES(f) by
Proposition 3.10 and σ(K) ⊆ S. By the minimality of S, we have that σ(K) = S.
Thus, K = σ−1(S), that is, σ−1(S) ∈ MES(g). 2

Thus, the hypothesis of Theorem 3.6 holds whenever f is a surjective minor of
g. In fact, in this case, an even stronger conclusion holds.

Theorem 3.12. Let f and g be partial functions. If f ≤s g via σ, then mes(f) =
mes(g).

Proof. It suffices to show that the map ψ : MES(f) → MES(g) given by ψ(A) =
σ−1(A) for all A ∈ MES(f) is bijective.

The map ψ is well defined by Proposition 3.11, and it is clearly injective. The
surjectivity of ψ follows from Proposition 3.10. 2

4. The Width of the Poset of Essential Sets

In this section, we will consider our next variant of essential arity: the width
of the poset of essential sets. Recall that a poset (P ;≤) is called an antichain if
for each distinct x, y ∈ P , we have x � y and y � x. We call an antichain Q a
largest antichain in P if Q is a partially ordered subset of P and |R| ≤ |Q| for every
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antichain R in P . Let P be a poset. The width of P , denoted by w(P ), is the
cardinality of the largest antichain in P (see [15]).

Let f : X → B, where X ⊆ An, be a partial function. Then we can see that the
poset (ES(f);⊆) is a partially ordered subset of (P([n]);⊆). We are interested in
w(ES(f)), the width of the poset of essential sets of f . Unfortunately, as shown by
the following example, also this quantity may increase upon formation of minors.

Example 4.1. Let X and Y be sets given by

X = {(0, 0, 0), (0, 0, 1), (1, 0, 0), (1, 0, 1)}

and
Y = {(0, 0, 0), (1, 1, 0)}.

Define f : X → B and g : Y → B by

f
(0, 0, 0) 7→ 0
(0, 0, 1) 7→ 0
(1, 0, 0) 7→ 1
(1, 0, 1) 7→ 1

g
(0, 0, 0) 7→ 0
(1, 1, 0) 7→ 1.

Then f ≤ g via σ =

(
1 2 3
1 1 2

)
. We see that ES(f) = {{1}, {1, 2}, {1, 3}, {1, 2, 3}}

and ES(g) = {{1, 2}, {1, 2, 3}}. Then the largest antichain in (ES(f);⊆) is
{{1, 2}, {1, 3}} and {{1, 2, 3}} is a largest antichain in (ES(g);⊆), that is, w(ES(f)) =
2 > 1 = w(ES(g)). We observe that F = {{1, 2}, {1, 3}} is an antichain in
(ES(f);⊆), but σ−1(F) = {{1, 2}, {1, 2, 3}} is not an antichain in (ES(g);⊆).

We will still provide a sufficient condition for functions f and g with f ≤ g
to satisfy w(ES(f)) ≤ w(ES(g)). For this, we are going to make a few observa-
tions about minors arising via nonsurjective maps σ. Note that the following two
statements do not mean the same thing:

(1) f is a minor of g via surjective σ,

(2) f is a surjective minor of g via σ.

(All combinations are possible: surjective minor via surjective σ (Example 2.2),
nonsurjective minor via surjective σ (Example 3.8), surjective minor via nonsurjec-
tive σ (Example 4.1), nonsurjective minor via nonsurjective σ (modify Example 4.1
by adding (0, 1, 1) 7→ 1 to the definition of g).)

Lemma 4.2. Let f ≤ g via σ, where σ is surjective, and let S be an antichain in
(ES(f);⊆). Then σ−1(S) is an antichain in (ES(g);⊆). Moreover, |S| = |σ−1(S)|.
Proof. First, we observe that σ−1(S) ⊆ ES(g) by Lemma 3.4. Let K and L be
distinct members of σ−1(S). Then K = σ−1(S) and L = σ−1(T ) for some distinct
S, T ∈ S. Suppose that K ⊆ L. Then by the surjectivity of σ, S = σ(σ−1(S)) ⊆
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σ(σ−1(T )) = T . This is a contradiction to the fact that S is an antichain in
(ES(f);⊆). Similarly, if L ⊆ K, then a contradiction arises for the same reason.
Therefore, σ−1(S) is an antichain in (ES(g);⊆). By the surjectivity of σ, we can
define a bijective map ψ : S → σ−1(S) by ψ(S) = σ−1(S) for all S ∈ S. Thus,
|S| = |σ−1(S)|. 2

Corollary 4.3. Let f ≤ g via σ, where σ is surjective. Then (ES(g);⊆) has an an-
tichain of cardinality equal to the cardinality of the largest antichain in (ES(f);⊆).

Proof. Let S be a largest antichain in (ES(f);⊆). Then by Lemma 4.2, σ−1(S) is
an antichain in (ES(g);⊆) and |S| = |σ−1(S)|. 2

Theorem 4.4. If f ≤ g via σ, where σ is surjective, then w(ES(f)) ≤ w(ES(g)).

Proof. Let S be the largest antichain in (ES(f);⊆). We observe that for each
antichain K in ES(g), |K| ≤ |L| where L is a largest antichain in (ES(g);⊆). Thus,
by Corollary 4.3, |S| = |σ−1(S)| ≤ |T| where T is the largest antichain in (ES(g);⊆).
Therefore, w(ES(f)) ≤ w(ES(g)). 2

5. Exact Essential Sets

We have seen in Sections 2, 3 and 4 that the number of essential arguments,
the number of essential sets, the number of minimal essential sets, and the width of
the poset of essential sets are perhaps not the most suitable notions for describing
the structural complexity of partial functions, because they are neither monotone
increasing nor decreasing with respect to the minor order. In this section we will
introduce a variant of essential arity which is somewhat better in that it does not
increase upon formation of minors.

Definition 5.1. Let f : X → B, where X ⊆ An, be a partial function, and let S
be a nonempty subset of [n]. A witness (a,b) of essentiality of S in f is called an
exact witness (of essentiality) of S in f if (a,b) is not a witness of essentiality of
S \ {k} in f for any k ∈ S.

Example 5.2. Consider the following partial function f .

f
(0, 0, 0) 7→ 0
(1, 1, 0) 7→ 1

We see that ES(f) = {{1, 2}, {1, 2, 3}}, and the pair ((0, 0, 0), (1, 1, 0)) is a witness
of essentiality of {1, 2} and {1, 2, 3} in f . It is easy to see that ((0, 0, 0), (1, 1, 0))
is not a witness of essentiality of {1, 2} \ {1} = {2} and {1, 2} \ {2} = {1}
in f . Thus, ((0, 0, 0), (1, 1, 0)) is an exact witness of essentiality of {1, 2} in f .
But, ((0, 0, 0), (1, 1, 0)) is not an exact witness of essentiality of {1, 2, 3} in f since
((0, 0, 0), (1, 1, 0)) is a witness of essentiality of {1, 2, 3} \ {3} = {1, 2} in f .

The following proposition provides a possibly clearer, equivalent condition de-
scribing exact witnesses of essentiality.
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Proposition 5.3. Let f : X → B, where X ⊆ An, be a partial function. Assume
that the pair (a,b) is a witness of essentiality of a nonempty set S ⊆ [n] in f . Then
the following statements are equivalent:

(i) (a,b) is not a witness of essentiality of S \ {k} in f for any k ∈ S,

(ii) for all i ∈ [n], ai = bi if and only if i /∈ S.

Proof. (i)⇒ (ii): Let i ∈ [n]. Suppose that ai = bi. If i ∈ S, then (a,b) is a witness
of essentiality of S \ {i} in f . This contradicts our presumption; hence i /∈ S. On
the other hand, if i /∈ S, then it is clear that ai = bi by the fact that (a,b) is a
witness of essentiality of S in f .

(ii) ⇒ (i): Suppose, to the contrary, that there exists k ∈ S such that (a,b) is
a witness of essentiality of S \ {k} in f . This implies that ak = bk. But this means
that k /∈ S. This is a contradiction to our assumption. Therefore, we have that
(a,b) is a witness of essentiality of S \ {k} in f . 2

Let a := (a1, . . . , an) ∈ An. Let i ∈ [n] and b ∈ A. We denote the tuple

(a1, . . . , ai−1, b, ai+1, . . . , an) ∈ An

by a(i← b).
Let f : X → B, where X ⊆ An, be a partial function. The i-th argument is

fictitious in f if for all a ∈ An, one of the following conditions holds:

(i) a(i← b) /∈ X for all b ∈ A,

(ii) a(i← b) ∈ X for all b ∈ A and f(a(i← b)) = f(a(i← c)) for all b, c ∈ A.

Denote the set of all fictitious arguments of f by Fic f .

Remark 5.4. In a total function, an argument is fictitious if and only if it is
not essential. For partial functions this equivalence does not hold in general; an
argument may be essential, fictitious, or neither of the two, but not both essential
and fictitious.

Let f : X → B and g : Y → B, where X ⊆ Am and Y ⊆ An, be partial
functions. We observe that if f ≤ g via σ, then [m] \ Imσ ⊆ Fic f .

Example 5.5. Consider the following partial function f .

f
(0, 0, 0) 7→ 0
(0, 0, 1) 7→ 0
(1, 1, 0) 7→ 1
(1, 1, 1) 7→ 1

We see that the 3rd argument is fictitious in f since (0, 1, 0), (0, 1, 1), (1, 0, 0) and
(1, 0, 1) are not in the domain, and moreover f(0, 0, 0) = f(0, 0, 1) and f(1, 1, 0) =
f(1, 1, 1).
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Definition 5.6. Let f : X → B, where X ⊆ An, be a partial function. A subset
S ⊆ [n] is called an exact essential set in f if S is the empty set, or S does not
contain any fictitious argument of f and there exists a pair (a,b), where a,b ∈ An,
such that (a,b) is an exact witness of essentiality of S in f . We denote the set of
all exact essential sets in f by XES(f) and we set xes f := |XES(f)|.

Remark 5.7. We observe that XES(f) 6= ∅ since ∅ ∈ XES(f), every minimal
essential set in f is an exact essential set in f , and every exact essential set in f is
an essential set in f , but the converse is not true by Example 5.2.

We note that if S is an exact essential set in a total function f , then every
element of S is an essential argument by Definition 5.6 and Remark 5.4.

Since the number of essential sets of an n-ary function can be as large as 2n,
a number exponential to the arity, we find it convenient to rescale this quantity
logarithmically so as to stay in the same order of magnitude as the arity.

Definition 5.8. The exact essential hyperarity of a partial function f is defined as
ß f := log2 xes f .

Example 5.9. Consider the partial function f of Example 5.5. We see that {1, 2}
is an exact essential set in f since {1, 2} does not contain any fictitious argument
of f , and the pair ((0, 0, 0), (1, 1, 0)) is an exact witness of essentiality of {1, 2} in
f . However, {1, 2, 3} is not an exact essential set in f since it contains a fictitious
argument of f .

In general, if f ≤ g via σ and S is a nonempty exact essential set in f , then
σ−1(S) is not necessarily an exact essential set in g.

Example 5.10. Consider the following partial functions.

f
(0, 0) 7→ 0
(1, 1) 7→ 1

g
(0, 0, 0) 7→ 0
(0, 0, 1) 7→ 0
(1, 1, 0) 7→ 1
(1, 1, 1) 7→ 1

Then f ≤ g via σ =

(
1 2 3
1 2 2

)
. We see that S = {1, 2} ∈ XES(f) but σ−1(S) =

{1, 2, 3} /∈ XES(g). Observe that the 3rd argument is fictitious in g and σ−1(S) \
{3} ∈ XES(g).

Theorem 5.11. Let f ≤ g via σ. If S is a nonempty exact essential set in f , then
σ−1(S) \ Fic g is an exact essential set in g.

Proof. Assume that f is m-ary and g is n-ary. Denote by X and Y the domain of
f and the domain of g, respectively. Since S is an exact essential set in f , there
exist tuples a,b ∈ X such that the pair (a,b) is an exact witness of essentiality of
S in f ; this means, by Proposition 5.3, that f(a) 6= f(b) and for all i ∈ [m], ai = bi
if and only if i /∈ S. Without loss of generality, assume that Fic g = [`] for some
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` ∈ N. Let u := (bσ(1), . . . , bσ(`), aσ(`+1), . . . , aσ(n)). By the definition of fictitious
arguments, we have u ∈ Y and f(aσ) = f(u); hence, the pair (u,bσ) is a witness
of essentiality of σ−1(S) \ Fic g in g.

It remains to show that (u,bσ) is an exact witness. Let k ∈ [n]. Consider first
the case where k ∈ σ−1(S) \ Fic g. Then σ(k) ∈ S, so aσ(k) 6= bσ(k) because (a,b)
is an exact witness of S in f ; therefore (aσ)(k) = aσ(k) 6= bσ(k) = (bσ)(k) = u(k).
Consider then the case where k /∈ σ−1(S) \ Fic g. If k ∈ Fic g, then u(k) = bσ(k) =
(bσ)(k). Otherwise (k /∈ σ−1(S) and k /∈ Fic g) we have σ(k) /∈ S, so u(k) = aσ(k) =
bσ(k) = (bσ)(k). It now follows from Proposition 5.3 that the pair (u,bσ) is an
exact witness of essentiality of σ−1(S) \ Fic g in g. 2

Corollary 5.12. Let f ≤ g via σ. Then xes f ≤ xes g. Equivalently, ß f ≤ ß g.

Remark 5.13. Let f : X → B be a partial function, where X ⊆ An. We can
conclude immediately from definitions the following:

(i) i ∈ Ess f if and only if {i} ∈ XES(f).

(ii) ess f ≤ xes f .

(iii) f is constant if and only if xes f = 1, or, equivalently, ß f = 0.

Proof. xes f = 1 ⇔ The empty set is the only exact essential set in f .
⇔ For every nonempty subset S ⊆ [n], there is no

exact witness of essentiality of S in f .
⇔ f(a) = f(b) for any a,b ∈ X.
⇔ f is constant.

(iv) xes f ≤ |ES(f)|.

(v) mes(f) ≤ xes f .

We observe that if f and g are total functions such that f ≤ g via σ, then for
every i ∈ Ess f , σ−1({i}) \ Fic g = σ−1(i) ∩ Ess g 6= ∅.

Lemma 5.14. Let f : Am → B, g : An → B be total functions, and assume that
f ≤ g via σ. Then the mapping ϕ : XES(f) \ {∅} → XES(g) \ {∅} defined by
ϕ(S) = σ−1(S) ∩ Ess g is injective.

Proof. By Theorem 5.11, it is clear that ϕ is well defined. Let S, S′ ∈ XES(f)
such that S 6= S′. It is clear that S, S′ ⊆ Ess f . Without loss of generality, assume
that i ∈ S and i /∈ S′. By Lemma 2.1(ii), σ−1(i) ∩ Ess g 6= ∅. Then there exists
i′ ∈ σ−1(i) ∩ Ess g. We have i′ ∈ σ−1(S) ∩ Ess g and i′ /∈ σ−1(S′) ∩ Ess g, which
shows that ϕ is injective. 2

As a consequence, an analogue of Lemma 2.3 is true for the exact essential
hyperarity of total functions.

Proposition 5.15. Let f : Am → B, g : An → B be total functions, and assume
that f ≤ g via σ. Then we have that f ≡ g if and only if xes f = xes g (equivalently,
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ß f = ß g).

Proof. By Corollary 5.12, f ≡ g implies xes f = xes g. For the converse implication,
assume xes f = xes g. By Lemma 5.14, the map ϕ : XES(f) \ {∅} → XES(g) \ {∅},
ϕ(S) = σ−1(S)∩Ess g is injective, and it is, in fact, bijective because xes f = xes g.
Suppose, to the contrary, that f 6≡ g. Then f < g, so ess f < ess g by Fact
2.4(ii). In view of Remark 5.13(i), there exists i ∈ Ess g (i.e., {i} ∈ XES(g)) such
that S := ϕ−1({i}) has at least two elements, say {a, b} ⊆ S, a 6= b. We have
{a, b} ⊆ Ess f by Remark 5.7; hence σ−1(a) ∩ Ess g 6= ∅ and σ−1(b) ∩ Ess g 6= ∅ by
Lemma 2.1(ii), so there exist a′ ∈ σ−1(a) ∩ Ess g and b′ ∈ σ−1(b) ∩ Ess g. Since
σ−1(a) ∩ σ−1(b) = ∅, we have a′ 6= b′. Consequently,

{a′, b′} ⊆ σ−1({a, b}) ∩ Ess g ⊆ σ−1(S) ∩ Ess g = ϕ(S) = {i},

which yields the desired contradiction, and we conclude that f ≡ g. 2

The following example shows that Proposition 5.15 does not hold for partial
functions in general.

Example 5.16. Consider the following partial functions.

f
(0, 0) 7→ 0
(0, 1) 7→ 1
(1, 1) 7→ 1

g
(0, 0, 0) 7→ 0
(0, 0, 1) 7→ 1
(1, 1, 1) 7→ 1

Then f ≤ g via σ =

(
1 2 3
1 1 2

)
. We see that xes f = 2 = xes g but g is not a minor

of f . Hence f 6≡ g.

6. Exact Hyperarity Gap

As pointed out in Fact 2.4(ii), the essential arity of a total function decreases
upon formation of minors. One may ask how large this decrease of essential arity
must be for a given function. In this way one arrives at the notion of the arity gap
of a function. This question was first considered by Salomaa [14].

Let f : An → B be a function that depends on all of its variables, n ≥ 2. The
arity gap of f is defined by the following

gap f := min
I∈([n]

2 )
ess f − ess fI .

The arity gap of a total function is clearly at least 1. Salomaa showed that the
arity gap can be as large as |A| = k, where k ≥ 2, by providing an example of a

function f : Ak → A such that ess f = k and ess fI = 0 for every I ∈
(
[k]
2

)
. He also

showed that the arity gap of any Boolean function is at most 2 (see [14]).
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Later, Willard [17] extended this result to functions on arbitrary finite domains.
He showed that the arity gap of any function f : An → B, where k = |A| and n > k,
is at most 2.

Partial functions may have a negative arity gap. By Proposition 2.7,

gap f = min
I∈([n]

2 )
ess f − ess fI ≥ ess f − (ess f + 1) = −1.

See Example 2.2 for an example of a function f with gap f = −1.
The notion of exact essential hyperarity suggests an analogue of arity gap. Let

f : X → B be a partial function, where X ⊆ An. Define the exact hyperarity gap of
f by

xgap f := min
I∈([n]

2 )
ßf − ßfI .

Obviously, for any partial function f : X → B, where X ⊆ An, we have that
0 ≤ xgap f ≤ n.

By Example 5.16, we see that the exact hyperarity gap of a partial function can
be as small as 0. The following example shows that the exact hyperarity gap can
be as large as the arity n.

Example 6.1. Let n ≥ 4 and A := [k] with k ≥ n− 1. Define the sets

X0 = {(1, 2, . . . , n− 1)δ{l,l+1} : 1 ≤ l ≤ n− 1}

and
X1 = {a ∈ An : a(l) 6= a(l + 1) for all 1 ≤ l ≤ n− 1}.

Define a partial function f : X0 ∪ X1 → B where f−1(0) = X0 and f−1(1) = X1.

Then xes f = 2n and xes fI = 1 for all I ∈
(
[n]
2

)
. Thus,

xgap f = min
I∈([n]

2 )
ßf − ßfI = n.

Example 6.2. Let n ≥ 2. Define a Boolean (total) function f : Bn → B by

f(x) =

{
0 if x = 0,

1 otherwise.

Then xes f = 2n and xes fI = 2n−1 for all I ∈
(
[n]
2

)
. Thus,

xgap f = min
I∈([n]

2 )
ßf − ßfI = 1.

Definition 6.3.([1]) Let oddsupp:
⋃
n≥1A

n → P(A) be the mapping defined by

oddsupp(a1, . . . , an) = {a ∈ A : |{i ∈ [n] : aj = a}| is odd}.
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A function f : An → B is determined by oddsupp if there exists a mapping
f∗ : P(A)→ B such that f = f∗ ◦ oddsupp |An .

Example 6.4. Suppose that {0, 1, 2} ⊆ A and B ⊆ B. Define a function
f∗ : P(A)→ B by

f∗(X) =

{
0 if X = ∅ or X = {0},
1 otherwise.

Let f : An → B be a function defined by f := f∗◦oddsupp |An . Let S be a nonempty
subset of [n]. We must consider two different cases according to the parity of |S|.

(1) If |S| is odd, then the pair (0,a) is an exact witness of essentiality of S in f ,
where 0 = (0, . . . , 0) ∈ An and a ∈ An is defined by

a(i) =

{
0 if i /∈ S,

1 if i ∈ S.

(2) If |S| is even, then S is a disjoint union of odd subsets S1 and S2 of S, and the
pair (0,b) is an exact witness of essentiality of S in f , where 0 = (0, . . . , 0) ∈
An and b ∈ An is defined by

b(i) =


0 if i /∈ S,

1 if i ∈ S1,

2 if i ∈ S2.

We conclude that every subset of [n] is an exact essential set in f , that is, xes f = 2n.

For any I ∈
(
[n]
2

)
, the argument δI(I) is fictitious in fI and fI is equivalent to

f∗ ◦ oddsupp |An−2 . Thus, every subset of [n − 1] which does not contain δI(I) is

an exact essential set in fI , that is, xes fI = 2n−2 for all I ∈
(
[n]
2

)
. Thus,

xgap f = min
I∈([n]

2 )
ßf − ßfI = 2.

Willard’s upper bound for the arity gap can be stated as follows.

Theorem 6.5.([17, Lemma 1.2, Corollary 2.3]) Let A and B be arbitrary finite
nonempty sets, and let k = |A|. Let f : An → B, and assume that ess f = n. If
n > k, then gap f ≤ 2. Moreover, if n > max(k, 3), then gap f = 2 if and only if f
is determined by oddsupp.

The analogue of the above for the exact hyperarity gap of partial functions does
not hold. The condition ess f = n means that f has no fictitious arguments. As
shown by the following example, there exist partial functions f without fictitious
arguments with xgap f > 2.
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attributes \ variants ess f es f mes(f) w(ES(f)) ß f

(1) – – – – X
(2) – X X X X
(3) X – X – –

Table 1: Variants of essential arity and their attributes. See Section 7 for a
list of the attributes.

Example 6.6. Let k ∈ N with k ≥ 2, let A := [k], and assume B ⊆ B. Let
a := (1, 2, . . . , k) and

u := (1, . . . , 1︸ ︷︷ ︸
k

, 2, . . . , 2︸ ︷︷ ︸
k

, . . . , k, . . . , k︸ ︷︷ ︸
k

) ∈ Ak
2

.

Let X0 := {u} and

X1 := {(aσ1,aσ2, . . . ,aσk) ∈ Ak
2

| σ1, σ2, . . . , σk permutations of [k]}.

Then X0 and X1 are disjoint subsets of Ak
2

, and we can define a partial function
f : X0 ∪ X1 → B by f−1(0) = X0 and f−1(1) = X1. It is easy to see that the
nonempty (exact) essential sets of f are precisely the subsets S of [k2] satisfying
|S ∩ {ik + 1, ik + 2, . . . , ik + k}| = k − 1 for all 0 ≤ i ≤ k − 1. It follows that

ßf = log2(kk + 1) and ßfI = 0 for all I ∈
(
[k2]
2

)
; thus, xgap f = log2(kk + 1) > 2.

Open problem 2. Provide a (sharp and nontrivial) upper bound for the exact
hyperarity gap of n-ary functions in PAB . (A trivial upper bound for an n-ary
function is n, but is this sharp?)

7. Concluding Remarks

We have defined some variants of essential arity for partial functions: the num-
ber of essential sets, the number of minimal essential sets, the width of the poset of
essential sets, and the exact essential hyperarity. For these measures of structural
complexity of a function, the following attributes are desirable:

(1) isotonicity with respect to the minor order,

(2) equality to 0 precisely for constant functions,

(3) coincidence with essential arity for total functions.

Our investigations show that only the exact essential hyperarity is isotone with
respect to the minor order and that all measures but the essential arity are equal to
0 precisely for constant functions. The number of minimal essential sets coincides
with essential arity for total functions; the other measures do not. This is summa-
rized in Table 1.
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