DOI QR코드

DOI QR Code

Diversity and Distribution of Bulb-associated fungi of Fritillaria Cirrhosae Bulbus Source Plants used in Traditional Chinese Medicine

  • Gao, Qian (School of Chinese Materia Medica, Yunnan University of Chinese Medicine) ;
  • Dong, Fawu (School of Chinese Materia Medica, Yunnan University of Chinese Medicine) ;
  • Xiang, Jianying (Yunnan Academy of Biodiversity/Faculty of Biodiversity Conservation, Southwest Forestry University)
  • 투고 : 2020.06.03
  • 심사 : 2020.08.03
  • 발행 : 2020.09.30

초록

Diversity and community composition of bulb-associated fungi of Fritillaria Cirrhosae Bulbus source plants, which are used in traditional chinese medicine, in the eastern Himalaya-Hengduan Mountains, southwestern China, were estimated based on the internal transcribed spacer rDNA sequence analysis, using host plant species, geographic area, and plant phenology as variables. A total of 1,486 fungal sequences assigned to 251 operational taxonomical units (OTUs) were obtained from the bulbs. Fungal OTUs comprised 96.41% Ascomycotina, 3.52% Basidiomycotina, and 0.07% Zygomycotina. Sordariomycetes, Hypocreales, and Nectriaceae were the most frequent fungal lineages at each taxonomic rank. Fusarium, Ilyonectria, Tetracladium, Leptodontidium, and Tomentella were the top OTU-rich genera. Fusarium sp. 03, Ilyonectria rufa, Fusarium sp. 08, Ilyonectria sp. 03, and Leptodontidium orchidicola 03 represented the most frequent OTUs. Fusarium spp. were the most frequent general taxa. The distribution of fungal community exhibited preferences for host plant species, geographic area, and plant phenology. These findings are the foundation of our research on culturing and active metabolites of bulb-associated fungi of Fritillaria Cirrhosae Bulbus source plants.

키워드

참고문헌

  1. Chinese Pharmacopoeia Commission. National Pharmacopoeia of China. Beijing: Chinese Pharmaceutical Science and Technology Press; 2015.
  2. Chen XQ, Mordak HV. Fritillaria. In: Wu ZY, Raven PH, Hong DY, editors. Flora of China (Vol 24). Beijing: Science Press; 2000. p. 127-133.
  3. Wang DD, Chen X, Atanasov AG, Yi X, Wand S. Plant resource availability of medicinal Fritillaria species in traditional producing regions in Qinghai-Tibet Plateau. Front Pharmacol 2017; 8:502. https://doi.org/10.3389/fphar.2017.00502
  4. Li XW. Study on conservation biology of Fritillaria Cirrhosae [dissertation]. Beijing: Graduate School of Chinese Union Medical University; 2009.
  5. Wu ML, Zhang Q, Song JY, Li XW. Ecological characteristics and suitability evaluation of Fritillaria cirrhosa D. Don based on Maxent model. Afr J Tradit Complem 2018;15:158-67. https://doi.org/10.21010/ajtcam.v15i1.16
  6. Jia M, Chen L, Xin HL, Zheng CJ, Rahman K, Han T, Qin LP. A friendly relationship between endophytic fungi and medicinal plants: a systematic review. Front Microbiolo 2016;7:906.
  7. Venieraki A, Dimou M, Katinakis P. Endophytic fungi residing in medicinal plants have the ability to produce the same or similar pharmacologically active secondary metabolites as their hosts. Hellenic Plant Prot J 2017;10:51-66. https://doi.org/10.1515/hppj-2017-0006
  8. Chen Q. Studies on endophytic fungi and secondary metabolites of Fritillaria Cirrhosae [dissertation]. Chengdu: Sichuan Agricultural University; 2012.
  9. Pan F, Hou K, Gao F, Hu B, Chen Q, Wu W. Peimisine and peiminine production by endophytic fungus Fusarium sp. isolated from Fritillaria unibracteata var. wabensis. Phytomedicine 2014;21:1104-9. https://doi.org/10.1016/j.phymed.2014.04.010
  10. Pan F, Su X, Hu B, Yang N, Chen Q, Wu W. Fusarium redolens 6WBY3, an endophytic fungus isolated from Fritillaria unibracteata var. wabuensis , produces peimisine and imperialine-3${\beta}$-d-glucoside. Fitoterapia 2015;103:213-21. https://doi.org/10.1016/j.fitote.2015.04.006
  11. Pan F, Su XM, Yang Y, Cao SM, Hou K, Wu W. Isolation, identification and the analysis of Fritillaria-type alkaloid producing of an endophytic fungus from Fritillaria cirrhosa D. Don. Nat Prod Res Develop 2018; 30:1149-1154.
  12. Mu MJ, Zhang DG, Zhang H, Yang M, Guo DQ, Zhou N. Correlation between rhizospheric microorganisms distribution and the alkaloid content of Fritillaria taipaiensis. J Tradit Chin Med 2019;11:6.
  13. Yan ZY, Zhang Q, Ma YT, Wan DG, Wang RT, Zhu YX. Diversity of endophytic fungi in Fritillaria Cirrhosae at different growth stages. West China J Pharm Sci 2008;23:521-3. https://doi.org/10.3969/j.issn.1006-0103.2008.05.007
  14. Chen Q, Wang YB, Liu ZQ, Shao JF, Dai Y, Xiang L, Wu W. Screening of alkaloid-producing endophytic fungi from Fritillaria unibracteata and antimicrobial activity determination of alkaloid. J Chin Antibiot 2012;6:406-20.
  15. Chen Q, Wang YB, Liu ZQ, Shao JF, Wu W. Screening, identification and antimicrobial activity determination of alkaloid-producing endophytic fungi from Fritillaria przewalskii. Chin Agric Sci Bull 2012;28:247-52.
  16. Pan F, Su TJ, Cai SM, Wu W. Fungal endophyte-derived Fritillaria unibracteata var. wabuensis: diversity, antioxidant capacities in vitro and relations to phenolic, flavonoid or saponin compounds. Sci Rep 2017;7:1-14. https://doi.org/10.1038/s41598-016-0028-x
  17. Kumar V, Soni R, Jain L, Dash B, Goel R. Endophytic fungi: Recent advances in identification and explorations. In: Kumar V, Soni R, Jain L, Dash B, Goel R, editors. Advances in Endophytic Fungal Research. Cham: Springer; 2019. p. 267-281.
  18. Chen SL, Jia MR, Wu Y, Xue G, Xiao PG. Study on the plant community of Fritillaria cirrhosa. J Chin Mater Med 2003;28:18-22.
  19. Li XH, Liu L, Gu X, Xiang JY. Heavy collecting induces smaller and deeper Fritillariae Cirrhosae Bulbus in the wild. Plant Divers 2017;39:208-13. https://doi.org/10.1016/j.pld.2017.05.002
  20. Gao Q, Yang ZL. Ectomycorrhizal fungi associated with two species of Kobresia in an alpine meadow in the eastern Himalaya. Mycorrhiza 2010;20:281-7. https://doi.org/10.1007/s00572-009-0287-5
  21. Schloss PD, Handelsman J. Introducing DOTUR, a computer program for defifining operational taxonomic units and estimating species richness. Appl Environ Microb 2005;71:1501-6. https://doi.org/10.1128/AEM.71.3.1501-1506.2005
  22. Nuohezhiyuan Technical Service Department. High-throughputt sequencing and big data analysis. Beijing: Technology Co., Ltd; 2016.
  23. Huang WY, Cai YZ, Hyde KD, Corke H, Sun M. Biodiversity of endophytic fungi associated with 29 traditional Chinese medicinal plants. Fungal divers 2008;33:61-75.
  24. Chowdhary K, Kaushik N, Coloma AG, Coloma AG, Raimundo CM. Endophytic fungi and their metabolites isolated from Indian medicinal plant. Phytochem Rev 2012;11:467-85. https://doi.org/10.1007/s11101-012-9264-2
  25. Pan F, Su TJ, Deng KL, Wu W, Wu W. Antioxidant activities and metabolic constituents of endophytic Fusarium tricinctum CBY11 isolated from Fritillaria cirrhosa. Mycosystema 2017; 36:752-65.
  26. Shah A, Rather MA, Hassan QP, Aga MA, Mushtaq S, Shah AM, Hussain A, Baba SA, Ahmad Z. Discovery of anti-microbial and anti-tubercular molecules from Fusarium solani: an endophyte of Glycyrrhiza glabra. J Appl Microbiol 2017;122:1168-76. https://doi.org/10.1111/jam.13410
  27. Su TJ, Dou MM, Pan F, Wu W. Antioxitant activity from the co-culture fermented product of endophytic fungi isolated from Fritillaria unibracteata var. wabuensis. Nat Prod Res Develop 2017; 29:1096-101.
  28. Mishra A, Gond S, Kumar A, Sharma VK, Verma SK, Kharwar RN, Sieber TN. Season and tissue type affect fungal endophyte communities of the Indian medicinal plant Tinospora cordifolia more strongly than geographic location. Microb Ecol 2012;64:388-98. https://doi.org/10.1007/s00248-012-0029-7
  29. Zheng YK, Qiao XG, Miao CP, Liu K, Chen YW, Xu LH, Zhao LX. Diversity, distribution and biotechnological potential of endophytic fungi. Ann Microbiol 2016;66:529-42. https://doi.org/10.1007/s13213-015-1153-7
  30. Huang W, Long C, Lam E. Roles of plant-associated microbiota in traditional herbal medicine. Trends Plant Sci 2018;23:559-62. https://doi.org/10.1016/j.tplants.2018.05.003