DOI QR코드

DOI QR Code

Improvement of Seedling Establishment in Wet Direct Seeding of Rice using the Anaerobic Germination Tolerance Gene Derived from Weedy Photoblastic Rice

잡초벼 PBR 혐기발아 내성 유전자 활용 벼 담수직파 초기 입모 개선

  • Jeong, Jong-Min (Crop breeding Division, National Institute of Crop Science, Rural Development Administration) ;
  • Mo, Youngjun (Crop breeding Division, National Institute of Crop Science, Rural Development Administration) ;
  • Baek, Man-Kee (Crop breeding Division, National Institute of Crop Science, Rural Development Administration) ;
  • Kim, Woo-Jae (International Technology Cooperation Division, Rural Development Administration) ;
  • Cho, Young-Chan (Crop breeding Division, National Institute of Crop Science, Rural Development Administration) ;
  • Ha, Su-Kyung (Crop breeding Division, National Institute of Crop Science, Rural Development Administration) ;
  • Kim, Jinhee (Crop breeding Division, National Institute of Crop Science, Rural Development Administration) ;
  • Jeung, Ji-Ung (Crop breeding Division, National Institute of Crop Science, Rural Development Administration) ;
  • Kim, Suk-Man (Crop breeding Division, National Institute of Crop Science, Rural Development Administration)
  • 정종민 (농촌진흥청 국립식량과학원 작물육종과) ;
  • 모영준 (농촌진흥청 국립식량과학원 작물육종과) ;
  • 백만기 (농촌진흥청 국립식량과학원 작물육종과) ;
  • 김우재 (농촌진흥청 국제기술협력과) ;
  • 조영찬 (농촌진흥청 국립식량과학원 작물육종과) ;
  • 하수경 (농촌진흥청 국립식량과학원 작물육종과) ;
  • 김진희 (농촌진흥청 국립식량과학원 작물육종과) ;
  • 정지웅 (농촌진흥청 국립식량과학원 작물육종과) ;
  • 김석만 (농촌진흥청 국립식량과학원 작물육종과)
  • Received : 2020.04.02
  • Accepted : 2020.06.18
  • Published : 2020.09.01

Abstract

Direct seeding is one of the rice seedling establishment methods that is increasingly being practiced by farmers to save labor and reduce costs. However, this method often causes poor germination under flooding conditions after sowing. In this study, we developed japonica elite lines with quantitative trait loci (QTL) associated with anaerobic germination (AG) tolerance to overcome poor germination and seedling establishment in wet direct seeding. The QTL introgression lines were developed from a cross between weedy photoblastic rice as the AG donor and the Nampyeong variety via phenotypic and genotypic selection. Compared to Nampyeong, the survival rates of the selected lines were improved by approximately 50% and 240% under field and greenhouse conditions, respectively. To improve selection efficiency by marker assisted selection, the QTL markers associated with AG tolerance were converted to cleaved amplified polymorphic sequence markers designed based on next-generation sequence analysis. These lines retained similar agronomic traits and yield potential to the parent, Nampyeong. Among these lines, we selected the most promising line, which exhibited high survival rate and good agricultural traits under flooding conditions and named the line as Jeonju643. This line will contribute to breeding programs aiming to develop rice cultivars adapted to wet direct seeding. This study demonstrates the successful application of marker-assisted selection to targeted introgression of anaerobic genes into a premium quality japonica rice variety.

본 연구에서는 국내 벼 직파재배 활성화 및 재배면적 확대를 위하여 담수발아 관련 QTLs 단편이 이입된 자포니카형 우량 계통을 육성하였다. 더불어 담수 중 혐기발아 내성과 관련 분자표지를 개발하였으며, 이를 우량계통 선발에 직접 활용하였다. 인공교배를 통해 국내 자포니카 잡초벼인 PBR을 수여친으로 남평을 반복친으로 여교잡을 수행하였으며, 이 조합으로부터 담수 혐기 발아성이 개선된 자포니카 형 우량계통을 육성하였다. 그리고 혐기 발아 내성 관련 QTL 판별을 위한 CAPS 분자표지(NP01.014, NP03.077, NP11.091)를 개발하였다. 여교잡 집단을 육성하고, 작물학적 특성, 담수저항성 검정 등의 표현형 선발과 분자표지 선발을 통해 주요 농업형질, 담수 혐기 발아성이 양호한 5계통이 최종 선발되었으며, 이들 계통은 모두 QC1 혹은 QC2 조합으로 남평에 비해 온실에서 평균 2.3배, 포장에서 2.6배 가량 유묘 생존율이 개선된 것으로 나타났다. 선발된 5계통에 대한 생산력 검정 예비시험(PYT), 주요 작물학적 특성 및 담수 혐기 발아성 등의 검정을 통해 28708을 담수직파 우량계통으로 최종 선발하고 '전주643호'로 계통명을 부여하였다.

Keywords

References

  1. Al-Ani, A., F. Bruzau, P. Raymond, V. Saint-Ges, J. M. Leblanc, et al. 1985. Germination, Respiration, and Adenylate Energy Charge of Seeds at Various Oxygen Partial Pressures. Plant Physiology 79(3) : 885-890. doi: 10.1104/pp.79.3.885.
  2. Angaji, S. A., E. M. Septiningsih, D. J. Mackill, and A. M. Ismail. 2010. QTLs associated with tolerance of flooding during germination in rice (Oryza sativa L.). Euphytica 172(2) : 159-168. doi: 10.1007/s10681-009-0014-5.
  3. Awika, J. M. 2011. Major cereal grains production and use around the world. ACS Symposium Series 1089 : 1-13. doi: 10.1021/bk-2011-1089.ch001.
  4. Baltazar, M. D., J. C. I. Ignacio, M. J. Thomson, A. M. Ismail, M. S. Mendioro, et al. 2014. QTL mapping for tolerance of anaerobic germination from IR64 and the aus landrace Nanhi using SNP genotyping. Euphytica 197(2) : 251-260. doi: 10.1007/s10681-014-1064-x.
  5. Biswas, J. K. and M. Yamauchi. 1997a. Mechanism of seedling establishment of direct-seeded rice (Oryza sativa L.) under lowland conditions. Bot. Bull. Acad. Sin. 38 : 29-32.
  6. Biswas, J. and M. Yamauchi. 1997b. Mechanism of seedling establishment of direct-seeded rice (Oryza sativa L.) under lowland conditions. Bot. Bull. Acad. Sin. (38) : 29-32.
  7. Dokku, P., K. M. Das, and G. J. N. Rao. 2013. Pyramiding of four resistance genes of bacterial blight in Tapaswini, an elite rice cultivar, through marker-assisted selection. Euphytica 192(1) : 87-96. doi: 10.1007/s10681-013-0878-2.
  8. Ismail, A. M., D. E. Johnson, E. S. Ella, G. V. Vergara, and A. M. Baltazar. 2012. Adaptation to flooding during emergence and seedling growth in rice and weeds, and implications for crop establishment. AoB Plants 2012(0) : pls019-pls019. doi: 10.1093/aobpla/pls019.
  9. Jeong, J. M., Y. C. Cho, J. U. Jeong, Y. J. Mo, and C. S. Kim, et al. 2020. QTL mapping and effect confirmation for anaerobic germination tolerance derived from the japonica weedy rice landrace PBR. Plant Breeding 139(1) : 83-92. doi: 10.1111/pbr.12753.
  10. Kim, S. M. and R. F. Reinke. 2018. Identification of QTLs for tolerance to hypoxia during germination in rice. Euphytica 214(9). doi: 10.1007/s10681-018-2238-8.
  11. Kim, S. E., K. M. Cho, Y. D. Kim, and J. Ko. 2006. Difference in anaerobic and low-temperature tolerance between direct-seeded rice and grass weeds. Kor. J. Weed Sci. 26 : 323-329.
  12. Kumar, V. and J. Ladha. 2011. Direct Seeding of Rice. Recent Developments and Future Research Needs. Advances in Agronomy 111 : 297-413. doi: 10.1016/B978-0-12-387689-8.00001-1.
  13. Magneschi, L. and P. Perata. 2009. Rice germination and seedling growth in the absence of oxygen. Annals of Botany 103(2) : 181-196. doi: 10.1093/aob/mcn121.
  14. Pandey, S. and L. Velasco. 2002. Economics of direct seeding in Asia: patterns of adoption and research priorities. In: S., P., M., M., L., W., TP., T., K., L., et al., editors, Direct seeding: research strategies and opportunities. International Rice Research Institute, Manila. pp. 3-14.
  15. Perez, L. M., E. D. Redoña, M. S. Mendioro, C. M. Vera Cruz, and H. Leung. 2008. Introgression of Xa4, Xa7 and Xa21 for resistance to bacterial blight in thermosensitive genetic male sterile rice (Oryza sativa L.) for the development of two-line hybrids. Euphytica 164(3) : 627-636. doi: 10.1007/s10681-008-9653-1.
  16. Pradhan, S. K., D. K. Nayak, S. Mohanty, L. Behera, S. R. Barik, et al. 2015. Pyramiding of three bacterial blight resistance genes for broad-spectrum resistance in deepwater rice variety, Jalmagna. Rice 8(1). doi: 10.1186/s12284-015-0051-8.
  17. RDA (Rural Development Administration) 2012. Manual for standard evaluation method in agricultural experiment and research. Suwon, Korea: RDA Press.
  18. Septiningsih, E. M., J. C. I. Ignacio, P. M. D. Sendon, D. L. Sanchez, A. M. Ismail, et al. 2013. QTL mapping and confirmation for tolerance of anaerobic conditions during germination derived from the rice landrace Ma-Zhan Red. Theoretical and Applied Genetics 126(5) : 1357-1366. doi: 10.1007/s00122-013-2057-1.
  19. Seshu, D., V. Krishnasamy, and S. Siddique. 1988. Seed vigor in rice (B. S. J., editor). Manila.
  20. Shin, W.-C., J.-C. Ko, M.-K. Baek, J.-K. Ko, B.-K. Kim, et al. 2013. A Medium Maturing New Rice Variety 'Suan' with High Quality for Direct Seeding and Transplanting Cultivation. Korean Journal of Breeding Science 45(4) : 393-398. doi: 10.9787/kjbs.2013.45.4.393.
  21. Singh, S., J. S. Sidhu, N. Huang, Y. Vikal, Z. Li, et al. 2001. Pyramiding three bacterial blight resistance genes (xa5, xa13 and Xa21) using marker-assisted selection into indica rice cultivar PR106. Theoretical and Applied Genetics 102(6-7) : 1011-1015. doi: 10.1007/s001220000495.
  22. Sundaram, R., M. Vishnupriya, S. Biradar, G. Laha, G. Reddy, et al. 2008. Marker assisted introgression of bacterial blight resistance in Samba Mahsuri, an elite indica rice variety. Euphytica 160 : 411-422. doi: 10.1007/s10681-007-9564-6.
  23. Tuong, T. P., P. P. Pablico, M. Yamauchi, R. Confesor, and K. Moody. 2000. Increasing water productivity and weed suppression of wet seeded rice: Effect of water management and rice genotypes. Experimental Agriculture 36(1) : 71-89. doi: 10.1017/S0014479700361099.
  24. Yamauchi, M. and T. Winn. 1996. Rice seed vigor and seedling establishment in anaerobic soil. Crop Science 36 : 680-686. doi:10.2135/cropsci1996.0011183X003600030027x.