References
- Abdel-Hafez, L.M., Abouelezz, A.E.Y. and Hassan, A.M. (2015), "Behavior of RC columns retrofitted with CFRP exposed to fire under axial load", HBRC J., 11(1), 68-81. https://doi.org/10.1016/j.hbrcj.2014.02.002.
- Ada, M., Sevim, B., Yuzer, N. and Ayvaz, Y. (2018), "Assessment of damages on a RC building after a big fire", Adv. Concrete Constr., 6(2), 177-197. http://dx.doi.org/10.12989/acc.2018.6.2.177.
- Ahmad, H., Hameed, R., Riaz, M.R. and Gillani, A.A. (2018), "Strengthening of concrete damaged by mechanical loading and elevated temperature", Adv. Concrete Constr., 6(6), 645-658. http://dx.doi.org/10.12989/acc.2018.6.6.645.
- Alhatmey, I.A., Ekmekyapar, T. and Alrebeh, S.K. (2018), "Residual strength capacity of fire-exposed circular concrete-filled steel tube stub columns", Adv. Concrete Constr., 6(5), 485-507. http://dx.doi.org/10.12989/acc.2018.6.5.485.
- Alsaad, A. and Hassan, G. (2017), "Utilization of CFRP for strengthening RC columns in marine environment", Case Stud. Constr. Mater., 7, 30-35. https://doi.org/10.1016/j.cscm.2017.05.002.
- Alsayed, S.H., Almusallam, T.H., Ibrahim, S.M., Al-Hazmi, N.M., Al-Salloum, Y.A. and Abbas, H. (2014), "Experimental and numerical investigation for compression response of CFRP strengthened shape modified wall-like RC column", Constr. Build. Mater., 63, 72-80. https://doi.org/10.1016/j.conbuildmat.2014.04.047.
- BSI (2004), Eurocode 2 - Design of Concrete Structures-Part 1-2: General Rules-Structural fire Design, British Standards Institution, London, UK.
- BSI (2013), Eurocode 4-Design of Composite Steel and Concrete Structures-Part 1-2: General Rules-Structural Fire Design, British Standards Institution, London, UK.
- Cai, B. and Yuan, Y.H. (2016), "Reliability of bending capacity for corroded reinforced concrete beam strengthened with CFRP", Concrete, (10), 148-151.
- Cai, B. and Zhao, L.L. (2018), "Research of reliability of bearing capacity for corroded axial-compression reinforced concrete column strengthened with CFRP", Arch. Technol., 49(1), 65-68.
- Cai, B., Zhang, B. and Fu, F. (2019), "A new Reliability analysis approach of flexural capacity of post-fire reinforced concrete beams retrofitted with CFRPs", Proceedings of the Institution of Civil Engineers: Structures and Buildings, 1-15. https://doi.org/10.1680/jstbu.19.00037.
- Cardoso, J.B., Almeida, J.R.D., Dias, J.M. and Coelho, P.G. (2008), "Structural reliability analysis using Monte Carlo simulation and neural networks", Adv. Eng. Softw., 39(6), 505-513. https://doi.org/10.1016/j.advengsoft.2007.03.015.
- Chen, Z.P., Zhou, S.W. and Liang, H.R. (2018), "Shear behavior test and bearing capacity calculation of recycled aggregate concrete beam after high temperature", J. Nat. Disast., 27(5), 140-152. https://doi.org/10.1016/j.conbuildmat.2015.12.103.
- Cree, D., Chowdhury, E.U., Green, M.F., Bisby, L.A. and Benichou, N. (2012), "Performance in fire of FRP-strengthened and insulated reinforced concrete columns", Fire Saf. J., 54, 86-95. https://doi.org/10.1016/j.firesaf.2012.08.006.
- Danilov, A.I. (2016), "Some aspects of CFRP steel structures reinforcement in civil engineering", Procedia Eng., 153, 124-130. https://doi.org/10.1016/j.proeng.2016.08.091.
- Doran, B., Yetilmezsoy, K. and Murtazaoglu, S. (2015), "Application of fuzzy logic approach in predicting the lateral confinement coefficient for RC columns wrapped with CFRP", Eng. Struct., 88, 74-91. https://doi.org/10.1016/j.engstruct.2015.01.039.
- El-Fitiany, S.F. and Youssef, M.A. (2017), "Fire performance of reinforced concrete frames using sectional analysis", Eng. Struct., 142, 165-181. https://doi.org/10.1016/j.engstruct.2017.03.065.
- Ellingwood, B.R. (2005), "Load combination requirements for fire-resistant structural design", Fire Protect Eng., 15(1), 43-61. https://doi.org/10.1177/1042391505045582.
- Feng, X.B. and Yang, H. (2002), "Realization of structural reliability by Monte Carlo method with MATLAB", China Rural Water Hydrop., 8, 50-51.
- Fu, F. (2012), "Response of a multi-storey steel composite building with concentric bracing under consecutive column removal scenarios", J. Constr. Steel Res., 70, 115-126. https://doi.org/10.1016/j.jcsr.2011.10.012.
- Fu, F. (2015), Advanced Modeling Techniques in Structural Design, John Wiley & Sons, Ltd.
- Fu, F. (2016a), Structural Analysis and Design to Prevent Disproportionate Collapse, CRC Press, Boca Raton, FL, USA.
- Fu, F. (2016b), "3D finite element analysis of the whole-building behavior of tall building in fire", Adv. Comput. Des., 1(4), 329-344. http://dx.doi.org/10.12989/acd.2016.1.4.329.
- Fu, F. (2018), Design and Analysis of Tall and Complex Structures, Elsevier, London, UK.
- Fu, F., Lam, D. and Ye, J.Q. (2008), "Modelling semi-rigid composite joints with precast hollowcore slabs in hogging moment region", J. Constr. Steel Res., 64(12), 1408-1419. https://doi.org/10.1016/j.jcsr.2008.01.012.
- Fu, F., Lam, D. and Ye, J.Q. (2010), "Moment resistance and rotation capacity of semi-rigid composite connections with precast hollowcore slabs", Steel Constr., 66(3), 452-461. https://doi.org/10.1016/j.jcsr.2009.10.016.
- Gao, S., Guo, L., Fu, F. and Zhang, S. (2017), "Capacity of semi-rigid composite joints in accommodating column loss", J. Constr. Steel Res., 139, 288-301. https://doi.org/10.1016/j.jcsr.2017.09.029.
- GB (2001), GB 50068-2001: Unified Standard for Reliability Design of Building Structures, China Architecture Industry Press, Beijing, China.
- GB (2008), GB 50153-2008: Unified Standards for Reliability Design of Engineering Structures, China Architecture Industry Press, Beijing, China.
- GB (2010), GB 50010-2010: Code for Design of Concrete Structures, China Architecture and Building Press, Beijing, China.
- GB (2012), GB 50009-2012: Load Code for the Design of Building Structures, China Architecture and Building Press, Beijing, China.
- GB (2013), GB 50367-2013: Code for Design of Strengthening Concrete Structure, China Architecture and Building Press, Beijing, China.
- Gjorv, O.E. (2013), "Durability design and quality assurance of major concrete infrastructure", Adv. Concrete Constr., 1(1), 45-63. http://dx.doi.org/10.12989/acc.2013.1.1.045.
- Gong, J.X. and Wei, W.W. (2007), Design Principle of the Reliability of Engineering Structures, China Machine Press, Beijing, China.
- Gong, J.X., Zhao, G.F. and Liu, L. (2000), "Reliability analysis of reinforced concrete axially compressed members after rehabilitation", Build. Struct., 30(3), 29-33.
- Guo, Z.H. and Shi, X.D. (2003), Behaviour of Reinforced Concrete at Elevated Temperature and its Calculation, Tsinghua University Press, Beijing, China.
- Imran, M., Mahendran, M. and Keerthan, P. (2018), "Heat transfer modelling of CFRP strengthened and insulated steel tubular columns", Constr. Build. Mater., 184, 278-294. https://doi.org/10.1016/j.conbuildmat.2018.06.205.
- ISO (International Organization for Standardization) (1999), ISO 834-1: Fire-Resistance Tests-Elements of Building Construction-Part 1: General Requirements, International Organization for Standardization, Geneva, Switzerland.
- Kim, J.J., Youm, K.S. and Reda T.M.M. (2014), "Extracting concrete thermal characteristics from temperature time history of RC column exposed to standard fire", Scientif. World J., 2014, 1-10. https://doi.org/10.1155/2014/242806.
- Kodur, V.K.R., Raut, N.K., Mao, X.Y. and Khaliq, W. (2013), "Simplified approach for evaluating residual strength of fire-exposed reinforced concrete columns", Mater. Struct., 46(2), 2059-2075. ttps://doi.org/10.1617/s11527-013-0036-2.
- Li, J.H., Yu, C.H., Tang, Y.F., Liu, M.Z. and Xiao, H. (2011), "Experimental research on rehabilitation with CFRP sheets for reinforced concrete columns after exposure to fire", J. Arch. Civil Eng., 28(4), 48-54.
- Lie, T.T., Rowe, T.J. and Lin, T.D. (1986), "Residual strength of fire-exposed reinforced concrete column", Am. Concrete Inst., 92, 153-174.
- Qian, K., Liang, S.L., Xiong, X.Y., Fu, F. and Fang, Q. (2020), "Quasi-static and dynamic behavior of precast concrete frames with high performance dry connections subjected to loss of a penultimate column scenario", Eng. Struct., 205, 110115-110115. https://doi.org/10.1016/j.engstruct.2019.110115.
- Sahamitmongkol, R., Choktaweekarn, P., Sancharoen, P. and Tangtermsirikul, S. (2011), "Damage analysis of an RC column subjected to long-term transient elevated temperature", Struct. Infrastr. Eng., 7(12), 921-930. https://doi.org/10.1080/15732470903241873.
- Sen, R., Liby, L. and Mullins, G. (2001), "Strengthening steel bridge sections using CFRP laminates", Compos. Part B: Eng., 32(4), 309-322. https://doi.org/10.1016/S1359-8368(01)00006-3.
- Shaikh, F.U.A. and Taweel, M. (2015), "Compressive strength and failure behaviour of fibre reinforced concrete at elevated temperatures", Adv. Concrete Constr., 3(4), 283-293. http://dx.doi.org/10.12989/acc.2015.3.4.283.
- Shen, R., Feng, L.Y. and Rong, K. (1991), "Assessment on mechanical property of rebar after elevated temperature (fire)", Sichuan Build. Sci., 17(2), 5-9.
- Taljsten, B. and Elfgren, L. (2000), "Strengthening concrete beams for shear using CFRP-materials: evaluation of different application methods", Compos. Part B: Eng., 31(2), 87-96. https://doi.org/10.1016/S1359-8368(99)00077-3.
- Van Coile, R. and Bisby, L. (2017), "Initial probabilistic studies into a deflection-based design format for concrete floors exposed to fire", Procedia Eng., 210, 488-495. https://doi.org/10.1016/j.proeng.2017.11.105.
- Van Coile, R., Annerel, E., Caspeele, R. and Taerwe, L. (2013), "Full-probabilistic analysis of concrete beams during fire", J. Struct. Fire Eng., 4(3), 165-174. https://doi.org/10.1260/2040-2317.4.3.165
- Wang, G.Y., Liu, Q., Zhang, D.M. and Zhang, C. (2016), "A finite element model for post-fire seismic performance of steel reinforced concrete columns", Eng. Mech., 33(11), 183-192.
- Weng, Y.H., Qian, K., Fu, F. and Fang, Q. (2020), "Numerical investigation on load redistribution capacity of flat slab substructures to resist progressive collapse", J. Build. Eng., 29, 101109. https://doi.org/10.1016/j.jobe.2019.101109.
- Winful, D., Cashell, K.A., Afshan, S., Barner, A.M. and Pargeter, R.J. (2018), "Behaviour of high strength steel columns under fire conditions", J. Constr. Steel Res., 150, 392-404. https://doi.org/10.1016/j.jcsr.2018.06.008.
- Won, D.H., Park, W.S., Jang, I.S., Han, S.H. and Han, T.H. (2014), "Fire resistance performance of steel composite hollow RC column with inner tube under ISO 834 standard fire", Struct. Concrete, 15(4), 543-555. https://doi.org/10.1002/suco.201300067.
- Wu, B. (2014), The Mechanical Properties of Reinforced Concrete Structures after Fire, Science Press, Beijing, China.
- Xu, Y.L., Li, G.H. and Fan, C.J. (2014), "The finite element simulation analysis of reinforced concrete beams under high temperature based on ABAQUS", Constr. Des. Project, (6), 1-6.
- Xu, Y.Y. and Wang, Q.F. (2010), "Research on residual strength of reinforced concrete columns after exposure to fire", Eng. Mech., 27(2), 84-89.
- Yazdani, N., Beneberu, E. and Mohiuddin, A.H. (2018), "CFRP retrofit of concrete circular columns: Evaluation of design guidelines", Compos. Struct., 202, 458-464. https://doi.org/10.1016/j.compstruct.2018.02.066.
- Yuan, J. (2017), "Reliability analysis of shear capacity of reinforced concrete beams", J. Build. Struct., 38(4), 109-128. https://doi.org/10.1680/jmacr.19.00367.
- Yue, Q.R. (2000), "Present status of research and application of strengthening and repairing technology with carbon fiber reinforced plastics (CFRP) and its outlook in China", Indus. Constr., 30(10), 23-26. https://doi.org/10.3321/j.issn:1000-8993.2000.10.006
- Yue, Q.R., Chen, X.B. and Mu, H.Y. (1998), "New technology of carbon fibre reinforced plastics on strengthening & repairing concrete structures", Indus. Constr., 28(11), 1-5.
- Zhang, B., Cullen, M. and Kilpatrick, T. (2014), "Fracture toughness of high performance concrete subjected to elevated temperatures Part 1 - The effects of heating temperatures and testing conditions (hot and cold)", Adv. Concrete Constr., 2(2), 145-162. http://dx.doi.org/10.12989/acc.2014.2.2.015.
- Zhou, X.H., Tu, X., Chen, A.R. and Wang, Y.Q. (2019), "Numerical simulation approach for structural capacity of corroded reinforced concrete bridge", Adv. Concrete Constr., 7(1), 11-22. http://dx.doi.org/10.12989/acc.2019.7.1.011.