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IDENTITIES INVOLVING THE DEGENERATE GENERALIZED
(p,q)-POLY-BERNOULLI NUMBERS AND POLYNOMIALS'

N.S. JUNG

ABSTRACT. In this paper, we introduce degenerate generalized poly-Bernoulli
numbers and polynomials with (p, ¢)-logarithm function. We find some
identities that are concerned with the Stirling numbers of second kind and
derive symmetric identities by using generalized falling factorial sum.
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1. Introduction

Throughout this paper, we use the following notations. N denotes the set of
natural numbers, Z denotes the set of integers, R denotes the real numbers and
C denotes the complex numbers, respectively.

The ordinary Bernoulli numbers B,, and polynomials B,,(z) are given by the
generating functions:

t iBtn 4 bt e iB()t” <™
= n— an e’ = n(Z)—, =
-1 = n! et —1 = n! 2

Many mathematicians have studied about the generalizations of these num-
bers and polynomials. Carlitz introduced the generating functions of the de-
generate poly-Bernoulli polynomials (see [2,6,11]). Also, in [1,4,5,6,7,8,9], some
properties of the poly Bernoulli numbers and their zeta functions are researched.

Let A € R and A # 0. We note that the generating function of degenerate
Bernoulli polynomials B,, x(z) is given by (see [2,6,11]):
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t
(14 Xt)> —1

It is evident that (1.1) reduces to the generating function of the ordinary Bernoulli
polynomials as below:

(14 At)> :ZBH,,\(x)%. (1.1)

n=0

oo

t . tm
m ——— 1+ )5 =5 "B, (2)=.
A—>0(1+)\t)%_1( ) nz:% ( )n!
For n € C, the (p, ¢)-number [n], , is defined as follows
pn o qn
n =—. 1.2
[n]p.q PR (1.2)

Note that lim,_1[n], ¢ = [nlq, (¢ # 1) and limg_,q[n], = n.

In [4], we defined a generalization of the ordinary Bernoulli polynomials
B, (x;a) with variable a by :

Lin(l=e™) o = oy 17
eat — 1 e :ZOB’SL)(‘(L.;G’)E
where
0 n
Lix(x) =Y 5, (keZ) (see[1,45.,6,7.89))
n
n=1

is polylogarithm function. When k = 1, the polylogarithm function is appeared
Liy(z) = —log(l — ) and Li;(1 — e~ ) = t. Thus, the result shows that the
poly-Bernoulli polynomials are identical to the ordinary Bernoulli polynomials
B, (x).

From the Equation(1.2), the (p,¢)-analogue of the polylogarithm function
Liy, 4 is given by

n

Likpg(z) =Y [ ék J(keZ) (see[568]).
n=1 p,q

In [5], by using (p,q)-polylogarithm function, we introduced a generalized
(p, 9)-poly-Bernoulli numbers and polynomials. For n,k € Z with n > 0 and
0 < g < p <1, we define a generalized (p, ¢)-poly-Bernoulli polynomials with
variable a by

Ligpo(l1—e7t) ., & t"
%e t= ZB,(L’f])m(a:;a)m.
n=0
In the case x = 0, it leads to BT(,,%,,I(O;CL) = By(fz),yq(a) that is, the generalized
(p, q)-poly-Bernoulli numbers with variable a.
In this paper, we define degenerate generalized (p, ¢)-poly-Bernoulli polyno-
mials and make a study the analytic properties of them. We also find some
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identities that are related with the Stirling numbers of the second kind. Fur-
thermore, using special functions and generalized falling factorial sum, we derive
some symmetric properties of the degenerate generalized (p,q)-poly Bernoulli
numbers and polynomials.

2. Some identities of the degenerate generalized (p, ¢)-poly-Bernoulli
polynomials

In this section, we introduce degenerate generalized (p, ¢)-poly-Bernoulli poly-
nomials Bka;\ » q(x; a). We also explore some analytic properties that is concerned

with the polynomials.

Definition 2.1. For A€ Ry, n >0,k € Z, and 0 < ¢ < p < 1, we define degen-
erate generalized (p, q)-poly-Bernoulli polynomials by the following generating
function:

Ligp,q(1— e_t) z - (k) t"
—obd (14 M) = B ja)—
Arai—1 LTAY nz::o RRICE
where
o0 t"
Likﬁmq(t) = Z [n]"
n—=o p.q

is the k-th (p, ¢)-polylogarithm function. When z = 0, Bff;\ypyq(o; a) = Bnlfg\’p’q(a)
are called the degenerate generalized (p, ¢)-poly-Bernoulli numbers.
Since limy_,(1 + At)* = e, it is trivial that the degenerate generalized (p, q)-
poly-Bernoulli polynomials are reduced the generalized (p, ¢)-poly-Bernoulli poly-
nomials :
: (k)
t )
Note that (), = z(z —1)(x —2)--- (2 —n+1) =1I}_,(x — (k- 1)) is falling
factorial and (x|\), = H}_,(x — A(k — 1)) is generalized falling factorial with
increment A.

. _ k) .
7p,q(‘rﬂ a) - ‘B’n7 7q(‘r7 a’)'

Theorem 2.2. For integer n,m and k with n > 0 and m > 1, we have

n
k n n— k
B patmaia) =3 ()" B3, )b

1=0
Proof. Let n >0, m > 1 and k € Z. We obtain

00 )
t" L 1—et ma
ZB(k) (mx;a)ﬁ _ ikpog( € )(1 FA)E

~ n,\,p,q (1 + /\t)% 1
c© n n i -

- Z Z <Z>Bl(,>\),p,q(a)(mx)‘)n—ln'-

n=0 =0 !

Therefore we obtain the above result. O
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When m = 1, it satisfies

BY  (wa)=Y" (’;) B, (@) (@ \)ni. (2.1)

1=0
Theorem 2.3. Let n and k be integers with n > 0 and z,y € R. We get the
addition theorem :

n
k n k
Br(t,gx,p,q(x +yia) = Z (Z)Bl(ﬁ)’p,q(x; a) (Y[ A)n—i

1=0
Proof. Forn >0 and k € Z and z,y € R, we have

- " Ligpq(l—e
3B o+ sy = Eeeal € g

=" (I4+M)x =1
o0 tn
—ZZ BYq(@:a) 4\t
n=0 1=0 '
Note that if z = 0, then the above result induce (2.1). O

Theorem 2.4. Letn > 0,k € Z and x,y € R. We have

k — (n n—1 (k Y
sz,;\,p,q(x; a) - Z (l>>\ lBl(’A)’p’q(x - a) (X)n—l .
1=0
Proof. For z,y € R and n,k € Z with n > 0, we get

S~ p®) A S (Y AU
> B palwio) g = 3 Bhpale -y 3 (5), 5

=SS () - (3),

The Stirling numbers of the second kind S3(n,m) are defined by

= 3 Sy(n,m) ()
m=0

The generating function of the Stirling numbers of the second kind are given
by

e tn et — 1)m
Z: Sa(n, m)g = % (see [2-6]).

In [5], the (p, ¢)-polylogarithm function is represented as the following form
with the stirling numbers of the second kind:

szpql—e ) i”i l+"+1l_52(n+1,l)ﬁ

n+1 nl (2:2)

n=0 [=1
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From (2.2), we obtain next result.

Theorem 2.5. Forn,k € Z with n > 0, we have

n i+1 I+i+17) .
k) n (-1) NSy(i +1,1)
B, (x;a) = ( ) - B_ix(z;a).
AP, ; q ; [l]g_’q(l + 1)
Proof. Using the Definition 2.1, (1.1) and (2.2), we get
i BY) (; a)ﬁ = Likpq(l =€) t(1+ )5
L AR ) t (1+A)% —1

[e’) n i+1 : .
B n\ (=) S, (4 1,1) NG
235 () Sy By

n=0i=0 I=1 p.q
O
Theorem 2.6. Forn > 1, k € Z, we find a recurrence relation as below
k k
Bfl ;\ pql@taia)— Bfl’/)\,p,q(:c; a)
n r—1
n (_1)l+1+r
= —— (I + DSy (r, 1+ 1) | (|N)p—s
0 (5 7,
Proof. Let n and k be integers with n > 1. We have
k 71
ZBnqu (z+asa f_ZBv(L;pq
Ligp,q(1 ") +e Likpq(l g z
= ZhEpat 7 (4 a) T - SRR (1 4 )
(1+)\t)x—1( ) (1+/\t)x—1( )
1 _ —t 1+1 .
= Z ¢ (14 At)%
[+ 1]M
oo r—1 l+1+r tr > tn
—ZZ H z+1)!52(r,l+1)52(m),%
r=11=0 n=0
co n r—1 .
n (_1)l+1+7 tn
= (I + DISo(r, L+ 1) | (2] N)p—r—-
>3() (Z T+, z
O
By using the sum of geometric sequence, we note that
d—1 ad
aitz — 1+ M)~
14+ At) > 14+ M) —m—m——. 2.3
;(+ ) = (14203 17(1+At)x (2:3)

From (2.3), we get next theorem.
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Theorem 2.7. For n,k € Z with n > 0, we obtain

D (=18, (1) T (14 AT
B(k) Tia) = ( , ’
whpa(9) ; 1159 2 1+ )% —1
Proof. Let n > 0 and k € Z. Then we have
t Liy, (1 — e_t) "
B(k) 7 P L A S— A R VA b
Z n)\pq l (].—‘r)\t)i—]_ ( + )
d 1
Li aitx
— “wq— (140"
1+ —1 &
. oy d-1
= le7p7{I(1 —€ t) t _ ( + A) a1+z
t o (L A)F
_ i Z (—=1)"+"1185(n, 1) dz—:l (1+At)=5= ¢
n=1 =1 [l]lliq ( + )\t)uT 1 n'
[ee] n l4+n d—1 a1+z
-y (=1)"" 1S5 (n, 1) Z (14 M)“3
n=0 1=1 5.4 < (14 M)% — 171'

3. Symmetric properties using generalized falling factorial sum

In this section, we find some symmetric identities for the degenerate gener-
alized (p, q)-poly-Bernoulli polynomials. Furthermore, we investigate another
symmetric results that are related with the generalized falling factorial sum.

Theorem 3.1. Let n, k be integers with n > 0 and my, ma(my # mg) > 0. The
symmetric identity is obtained:

“~(n n— k k
Z <T)m1 Bf“/\)pq(mly;a)Bv(L—)r,/\m,q(m2x5a)
r=0

- n r, n—rn(k k
= Z (T>m1m2 B”E‘)?pq(mQy;a)Bfl_)Ty)\,p,q(ml.T;a).
r=0

Proof. For n(n > 0),k € Z and my, mg > 0 with my # ma, we construct special
function as below:

Lik » q(l — e_mlt)Lik,pyq(]- — e_m2t)
((1 ) 1) ((1 FADRE - 1)
(mat)"

o (k) Cmat) 3 _
ZBTLJ\JLQ(?TIQ‘:U’G’)TZBTqu(mly’a) !

n=0 : r=0

'mlnzz (z+y)

F(t) = (14 At)
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o0 n n T k tn
=22 ()m MBI, (mys ) B, o (mawsa) .

In similarly, we obtain next result.

N n r_n—r k "
= Z Z <r> mims Bﬁvg,p,q(mgy, )Bn )TAp q(mlx;a)a.

n=0r=0
By comparing the coefficients of * -1 in above results, we can verify that the
theorem is correct. (]

Put p = 1 in the generating function of Theorem 3.1, then we get the next
Corollary.

Corollary 3.2. Let n,k be integers with n > 0 and my,mg > 0 with m; #
ms. Then we obtain the result of the degenerate generalized q-poly-Bernoulli
polynomials :

" /n
Z < )m Bq(q)q(mly;a)Bgi)N\yq(mgm;a)
= Z ( )mrmg TB( ) M2y )BfL )H\q(mlx;a).

If g — 1 and A — 0, then the symmetric identities in Corollary 3.2 is reduced
that of the generalized poly-Bernoulli polynomials.

Corollary 3.3. Let n,k be integers with n > 0 and my, mg > 0 with my # mo.
Then we obtain the result of the degenerate generalized poly-Bernoulli polynomi-

als : .
Z (n) m?frmgBﬁk) (myy; a)B,(lk_)r(mgx; a)
r
r=0

=> (n> mimy ™" B (may; a) B, (my23 a).
T
r=0
In [10,11], the generalized falling factorial sum is defined by

Z t" A+ )T -1
on(m — —_
Mo (L+A)x —1
Note that limy_,o 0, (m—1; ) = 0,,(m) where o,,(m) = Y, k" is the power
sums of the first integers(see [4,5,9]). Using the generalized falling factorial sum
and (2.2), we obtain a symmetric identities of the degenerate generalized (p, q)-
poly-Bernoulli numbers and polynomials.
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Theorem 3.4. Let my, ma(my # mao) € N and n,k € Z with n > 0. Then we
have

n K2

ZC) > Wusz(i,z)nf <nri>a”i o

i=0 =1 r=0
X Bfn?’p’q(amgx;a)on,i,r(ml -1 i A)
i=0 =1 qu r=0
X B()?p q(amlx;a)an_i_r(mzi_l;)\)

Proof. If we start the next function

m 1 mo am 1 mox

Lkl = €M) L (1 — e (14 A0 5 1) (14 M)

F(t) _ am2
(0™ 1) (0™ 1)
(3.1)
then it holds
n n+lm & k mit)"
Z Z S ——2118,(n, l) n Z Br(t,;\,p,qmmgx; a)( 'rlL')
n=0 =1 n=0
mq — 1 amat)!
XZU[( la 7)\>( 1'2)

0o n A H_lm n—i n—i ,
= ( ) 21152(1 l)Z( )a”_z_ mymy ="
T
n=0 =0 =1 r=0

mi — 1 t"
X Bﬁ/\)p q(amzx;a)an,i,r( 1a ; prt

In a similar way, (3.1) follows as below

F(t) = i zn: (7;) i: Wllsg(i,l):lz_:: (n;z> a" T T my

= e

X Bﬁgp  lamiz; a)an_i_r(mQTl; )\)%
(3.3)
Comparing the coefficients of t—, in (3.2) and (3.3), then it gives a symmetric
identity of the theorem. O

From the multinomial coefficient, the result of Theorem 3.4 is represented as
follows
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Corollary 3.5. Let my, ma(my # me) € N and n, k € Z with n > 0. Then we

obtain
= " n (1)
> X > g S (ml)
n—0 ni,n2,n3 =1 [”pﬂ
ny+mne+ny=n =
ni,nz,ng >0
n
(k) : mi =1t
xa"*mi*my* B, o (amaz;a) oy, ( P )E
Nt = n S (—1)m
=2 X > Seln )
ni, N2, N3 =1 mp,q
n +ng+ng=n -
ni,nz,ng >0
n
(k) : mp— 1\t
xa"*mi*my*B, "\ o (amiz;a) U"B(T’ /\)E
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