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IDENTITIES INVOLVING THE DEGENERATE GENERALIZED

(p, q)-POLY-BERNOULLI NUMBERS AND POLYNOMIALS†

N.S. JUNG

Abstract. In this paper, we introduce degenerate generalized poly-Bernoulli
numbers and polynomials with (p, q)-logarithm function. We find some

identities that are concerned with the Stirling numbers of second kind and

derive symmetric identities by using generalized falling factorial sum.
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1. Introduction

Throughout this paper, we use the following notations. N denotes the set of
natural numbers, Z denotes the set of integers, R denotes the real numbers and
C denotes the complex numbers, respectively.

The ordinary Bernoulli numbers Bn and polynomials Bn(x) are given by the
generating functions:

t

et − 1
=

∞∑
n=0

Bn
tn

n!
and

t

et − 1
ext =

∞∑
n=0

Bn(x)
tn

n!
, |t| < π

2
.

Many mathematicians have studied about the generalizations of these num-
bers and polynomials. Carlitz introduced the generating functions of the de-
generate poly-Bernoulli polynomials (see [2,6,11]). Also, in [1,4,5,6,7,8,9], some
properties of the poly Bernoulli numbers and their zeta functions are researched.

Let λ ∈ R and λ 6= 0. We note that the generating function of degenerate
Bernoulli polynomials Bn,λ(x) is given by (see [2,6,11]):
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t

(1 + λt)
1
λ − 1

(1 + λt)
x
λ =

∞∑
n=0

Bn,λ(x)
tn

n
. (1.1)

It is evident that (1.1) reduces to the generating function of the ordinary Bernoulli
polynomials as below:

lim
λ→0

t

(1 + λt)
1
λ − 1

(1 + λt)
x
λ =

∞∑
n=0

Bn(x)
tn

n!
.

For n ∈ C, the (p, q)-number [n]p,q is defined as follows

[n]p,q =
pn − qn

p− q
. (1.2)

Note that limp→1[n]p,q = [n]q, (q 6= 1) and limq→1[n]q = n.

In [4], we defined a generalization of the ordinary Bernoulli polynomials
Bn(x; a) with variable a by :

Lik(1− e−t)
eat − 1

ext =

∞∑
n=0

B(k)
n (x; a)

tn

n!

where

Lik(x) =

∞∑
n=1

xn

nk
, (k ∈ Z) (see [1,4,5,6,7,8,9])

is polylogarithm function. When k = 1, the polylogarithm function is appeared
Li1(x) = − log(1 − x) and Li1(1 − e−t) = t. Thus, the result shows that the
poly-Bernoulli polynomials are identical to the ordinary Bernoulli polynomials
Bn(x).

From the Equation(1.2), the (p, q)-analogue of the polylogarithm function
Lik,p,q is given by

Lik,p,q(x) =

∞∑
n=1

xn

[n]kp,q
, (k ∈ Z) (see [5,6,8]).

In [5], by using (p, q)-polylogarithm function, we introduced a generalized
(p, q)-poly-Bernoulli numbers and polynomials. For n, k ∈ Z with n ≥ 0 and
0 < q < p ≤ 1, we define a generalized (p, q)-poly-Bernoulli polynomials with
variable a by

Lik,p,q(1− e−t)
eat − 1

ext =

∞∑
n=0

B(k)
n,p,q(x; a)

tn

n!
.

In the case x = 0, it leads to B
(k)
n,p,q(0; a) = B

(k)
n,p,q(a) that is, the generalized

(p, q)-poly-Bernoulli numbers with variable a.
In this paper, we define degenerate generalized (p, q)-poly-Bernoulli polyno-

mials and make a study the analytic properties of them. We also find some
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identities that are related with the Stirling numbers of the second kind. Fur-
thermore, using special functions and generalized falling factorial sum, we derive
some symmetric properties of the degenerate generalized (p, q)-poly Bernoulli
numbers and polynomials.

2. Some identities of the degenerate generalized (p, q)-poly-Bernoulli
polynomials

In this section, we introduce degenerate generalized (p, q)-poly-Bernoulli poly-

nomialsB
(k)
n,λ,p,q(x; a). We also explore some analytic properties that is concerned

with the polynomials.

Definition 2.1. For λ ∈ R+, n ≥ 0, k ∈ Z, and 0 < q < p ≤ 1, we define degen-
erate generalized (p, q)-poly-Bernoulli polynomials by the following generating
function:

Lik,p,q(1− e−t)
(1 + λt)

a
λ − 1

(1 + λt)
x
λ =

∞∑
n=0

B
(k)
n,λ,p,q(x; a)

tn

n!

where

Lik,p,q(t) =

∞∑
n=0

tn

[n]kp,q

is the k-th (p, q)-polylogarithm function. When x = 0, B
(k)
n,λ,p,q(0; a) = B

(k)
n,λ,p,q(a)

are called the degenerate generalized (p, q)-poly-Bernoulli numbers.

Since limλ→0(1 + λt)
1
λ = et, it is trivial that the degenerate generalized (p, q)-

poly-Bernoulli polynomials are reduced the generalized (p, q)-poly-Bernoulli poly-
nomials :

lim
λ→0

B
(k)
n,λ,p,q(x; a) = B(k)

n,p,q(x; a).

Note that (x)n = x(x− 1)(x− 2) · · · (x−n+ 1) = Πn
k=1(x− (k− 1)) is falling

factorial and (x|λ)n = Πn
k=1(x − λ(k − 1)) is generalized falling factorial with

increment λ.

Theorem 2.2. For integer n,m and k with n ≥ 0 and m ≥ 1, we have

B
(k)
n,λ,p,q(mx; a) =

n∑
l=0

(
n

l

)
mn−1B

(k)
l,λ,p,q(a)(x|λ)n−l.

Proof. Let n ≥ 0, m ≥ 1 and k ∈ Z. We obtain

∞∑
n=0

B
(k)
n,λ,p,q(mx; a)

tn

n!
=
Lik,p,q(1− e−t)
(1 + λt)

a
λ − 1

(1 + λt)
mx
λ

=

∞∑
n=0

n∑
l=0

(
n

l

)
B

(k)
l,λ,p,q(a)(mx|λ)n−l

tn

n!
.

Therefore we obtain the above result. �
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When m = 1, it satisfies

B
(k)
n,λ,p,q(x; a) =

n∑
l=0

(
n

l

)
B

(k)
l,λ,p,q(a)(x|λ)n−l. (2.1)

Theorem 2.3. Let n and k be integers with n ≥ 0 and x, y ∈ R. We get the
addition theorem :

B
(k)
n,λ,p,q(x+ y; a) =

n∑
l=0

(
n

l

)
B

(k)
l,λ,p,q(x; a)(y|λ)n−l.

Proof. For n ≥ 0 and k ∈ Z and x, y ∈ R, we have
∞∑
n=0

B
(k)
n,λ,p,q(x+ y; a)

tn

n!
=
Lik,p,q(1− e−t)
(1 + λt)

a
λ − 1

(1 + λt)
x+y
λ

=

∞∑
n=0

n∑
l=0

(
n

l

)
B

(k)
l,λ,p,q(x; a) (y|λ)n−l

tn

n!
.

Note that if x = 0, then the above result induce (2.1). �

Theorem 2.4. Let n ≥ 0, k ∈ Z and x, y ∈ R. We have

B
(k)
n,λ,p,q(x; a) =

n∑
l=0

(
n

l

)
λn−lB

(k)
l,λ,p,q(x− y; a)

( y
λ

)
n−l

.

Proof. For x, y ∈ R and n, k ∈ Z with n ≥ 0, we get
∞∑
n=0

B
(k)
n,λ,p,q(x; a)

tn

n!
=

∞∑
m=0

B
(k)
m,λ,p,q(x− y; a)

tm

m!

∞∑
n=0

( y
λ

)
n

(λt)
n

n!

=

∞∑
n=0

n∑
l=0

(
n

l

)
λn−lB

(k)
l,λ,p,q(x− y; a)

( y
λ

)
n−l

tn

n!
.

�

The Stirling numbers of the second kind S2(n,m) are defined by

xn =

n∑
m=0

S2(n,m)(x)m.

The generating function of the Stirling numbers of the second kind are given
by

∞∑
n=m

S2(n,m)
tn

n!
=

(et − 1)m

m!
(see [2-6]).

In [5], the (p, q)-polylogarithm function is represented as the following form
with the stirling numbers of the second kind:

Lik,p,q(1− e−t)
t

=

∞∑
n=0

n+1∑
l=1

(−1)l+n+1

[l]kp,q
l!
S2(n+ 1, l)

n+ 1

tn

n!
. (2.2)
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From (2.2), we obtain next result.

Theorem 2.5. For n, k ∈ Z with n ≥ 0, we have

B
(k)
n,λ,p,q(x; a) =

n∑
i=0

(
n

i

) i+1∑
l=1

(−1)l+i+1l!S2(i+ 1, l)

[l]kp,q(i+ 1)
Bn−i,λ(x; a).

Proof. Using the Definition 2.1, (1.1) and (2.2), we get

∞∑
n=0

B
(k)
n,λ,p,q(x; a)

tn

n!
=
Lik,p,q(1− e−t)

t

t(1 + λt)
x
λ

(1 + λt)
a
λ − 1

=
∞∑
n=0

n∑
i=0

i+1∑
l=1

(
n

i

)
(−1)l+i+1l!S2(i+ 1, l)

[l]kp,q(i+ 1)
Bn−i,λ(x; a)

tn

n!
.

�

Theorem 2.6. For n ≥ 1, k ∈ Z, we find a recurrence relation as below

B
(k)
n,λ,p,q(x+ a; a)−B(k)

n,λ,p,q(x; a)

=

n∑
r=1

(
n

r

)(r−1∑
l=0

(−1)l+1+r

[l + 1]kp,q
(l + 1)!S2(r, l + 1)

)
(x|λ)n−r.

Proof. Let n and k be integers with n ≥ 1. We have

∞∑
n=0

B
(k)
n,λ,p,q(x+ a; a)

tn

n!
−
∞∑
n=0

B
(k)
n,λ,p,q(x; a)

tn

n!

=
Lik,p,q(1− e−t)
(1 + λt)

a
λ − 1

(1 + λt)
x+a
λ − Lik,p,q(1− e−t)

(1 + λt)
a
λ − 1

(1 + λt)
x
λ

=

∞∑
l=0

(1− e−t)l+1

[l + 1]kp,q
(1 + λt)

x
λ

=

∞∑
r=1

r−1∑
l=0

(−1)l+1+r

[l + 1]kp,q
(l + 1)!S2(r, l + 1)

tr

r!

∞∑
n=0

(x|λ)n
tn

n!

=

∞∑
n=0

n∑
r=1

(
n

r

)(r−1∑
l=0

(−1)l+1+r

[l + 1]kp,q
(l + 1)!S2(r, l + 1)

)
(x|λ)n−r

tn

n!
.

�

By using the sum of geometric sequence, we note that

d−1∑
i=0

(1 + λt)
ai+x
λ = (1 + λt)

x
λ

1− (1 + λt)
ad
λ

1− (1 + λt)
a
λ
. (2.3)

From (2.3), we get next theorem.
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Theorem 2.7. For n, k ∈ Z with n ≥ 0, we obtain

B
(k)
n,λ,p,q(x; a) =

n∑
l=1

(−1)l+nl!S2(n, l)

[l]kp,q

d−1∑
i=0

(1 + λt)
ai+x
λ

(1 + λt)
ad
λ − 1

.

Proof. Let n ≥ 0 and k ∈ Z. Then we have

∞∑
n=0

B
(k)
n,λ,p,q(x; a)

tn

n!
=
Lik,p,q(1− e−t)
(1 + λt)

a
λ − 1

(1 + λt)
x
λ

=
Lik,p,q(1− e−t)
(1 + λt)

d
λ − 1

d−1∑
i=0

(1 + λt)
ai+x
λ

=
Lik,p,q(1− e−t)

t

d−1∑
i=0

t

(1 + λt)
ad
λ −1

(1 + λ)
ai+x
λ

=

∞∑
n=1

n∑
l=1

(−1)l+nl!S2(n, l)

[l]kp,q

d−1∑
i=0

(1 + λt)
ai+x
λ

(1 + λt)
ad
λ − 1

tn

n!

=

∞∑
n=0

n∑
l=1

(−1)l+nl!S2(n, l)

[l]kp,q

d−1∑
i=0

(1 + λt)
ai+x
λ

(1 + λt)
ad
λ − 1

tn

n!
.

�

3. Symmetric properties using generalized falling factorial sum

In this section, we find some symmetric identities for the degenerate gener-
alized (p, q)-poly-Bernoulli polynomials. Furthermore, we investigate another
symmetric results that are related with the generalized falling factorial sum.

Theorem 3.1. Let n, k be integers with n ≥ 0 and m1,m2(m1 6= m2) > 0. The
symmetric identity is obtained:

n∑
r=0

(
n

r

)
mn−r

1 mr
2B

(k)
r,λ,p,q(m1y; a)B

(k)
n−r,λ,p,q(m2x; a)

=

n∑
r=0

(
n

r

)
mr

1m
n−r
2 B

(k)
r,λ,p,q(m2y; a)B

(k)
n−r,λ,p,q(m1x; a).

Proof. For n(n ≥ 0), k ∈ Z and m1,m2 > 0 with m1 6= m2, we construct special
function as below:

F (t) =
Lik,p,q (1− e−m1t)Lik,p,q (1− e−m2t)(
(1 + λt)

am1
λ − 1

)(
(1 + λt)

am2
λ − 1

) (1 + λt)
m1m2(x+y)

λ

=

∞∑
n=0

B
(k)
n,λ,p,q(m2x; a)

(m1t)
n

n!

∞∑
r=0

B
(k)
r,λ,p,q(m1y; a)

(m2t)
r

r!
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=

∞∑
n=0

n∑
r=0

(
n

r

)
mn−r

1 mr
2B

(k)
r,λ,p,q(m1y; a)B

(k)
n−r,λ,p,q(m2x; a)

tn

n!
.

In similarly, we obtain next result.

F (t) =

∞∑
n=0

n∑
r=0

(
n

r

)
mr

1m
n−r
2 B

(k)
r,λ,p,q(m2y; a)B

(k)
n−r,λ,p,q(m1x; a)

tn

n!
.

By comparing the coefficients of tn

n! in above results, we can verify that the
theorem is correct. �

Put p = 1 in the generating function of Theorem 3.1, then we get the next
Corollary.

Corollary 3.2. Let n, k be integers with n ≥ 0 and m1,m2 > 0 with m1 6=
m2. Then we obtain the result of the degenerate generalized q-poly-Bernoulli
polynomials :

n∑
r=0

(
n

r

)
mn−r

1 mr
2B

(k)
r,λ,q(m1y; a)B

(k)
n−r,λ,q(m2x; a)

=

n∑
r=0

(
n

r

)
mr

1m
n−r
2 B

(k)
r,λ,q(m2y; a)B

(k)
n−r,λ,q(m1x; a).

If q → 1 and λ→ 0, then the symmetric identities in Corollary 3.2 is reduced
that of the generalized poly-Bernoulli polynomials.

Corollary 3.3. Let n, k be integers with n ≥ 0 and m1,m2 > 0 with m1 6= m2.
Then we obtain the result of the degenerate generalized poly-Bernoulli polynomi-
als :

n∑
r=0

(
n

r

)
mn−r

1 mr
2B

(k)
r (m1y; a)B

(k)
n−r(m2x; a)

=

n∑
r=0

(
n

r

)
mr

1m
n−r
2 B(k)

r (m2y; a)B
(k)
n−r(m1x; a).

In [10,11], the generalized falling factorial sum is defined by
∞∑
n=0

σn(m− 1;λ)
tn

n!
=

(1 + λt)
m
λ − 1

(1 + λt)
1
λ − 1

.

Note that limλ→0 σn(m−1;λ) = σn(m) where σn(m) =
∑m
k=0 k

n is the power
sums of the first integers(see [4,5,9]). Using the generalized falling factorial sum
and (2.2), we obtain a symmetric identities of the degenerate generalized (p, q)-
poly-Bernoulli numbers and polynomials.
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Theorem 3.4. Let m1,m2(m1 6= m2) ∈ N and n, k ∈ Z with n ≥ 0. Then we
have

n∑
i=0

(
n

i

) i∑
l=1

(−1)i+lmi
2

[l]kp,q
l!S2(i, l)

n−i∑
r=0

(
n− i
r

)
an−i−rmr

1m
n−i−r
2

×B(k)
r,λ,p,q(am2x; a)σn−i−r(

m1 − 1

a
;λ)

=

n∑
i=0

(
n

i

) i∑
l=1

(−1)i+lmi
1

[l]kp,q
l!S2(i, l)

n−i∑
r=0

(
n− i
r

)
an−i−rmn−i−r

1 mr
2

×B(k)
r,λ,p,q(am1x; a)σn−i−r(

m2 − 1

a
;λ)

Proof. If we start the next function

F̃ (t) =
Lik,p,q(1− e−m1t)Lik,p,q(1− e−m2t)

(
(1 + λt)

m1m2
λ − 1

)
(1 + λt)

am1m2x
λ(

(1 + λt)
am1
λ − 1

)(
(1 + λt)

am2
λ − 1

) ,

(3.1)
then it holds

F̃ (t) =

∞∑
n=0

n∑
l=1

(−1)n+lmn
2

[l]kp,q
l!S2(n, l)

tn

n!

∞∑
n=0

B
(k)
n,λ,p,q(am2x; a)

(m1t)
n

n!

×
∞∑
l=0

σl(
m1 − 1

a
;λ)

(am2t)
l

l!

=

∞∑
n=0

n∑
i=0

(
n

i

) i∑
l=1

(−1)i+lmi
2

[l]kp,q
l!S2(i, l)

n−i∑
r=0

(
n− i
r

)
an−i−rmr

1m
n−i−r
2

×B(k)
r,λ,p,q(am2x; a)σn−i−r(

m1 − 1

a
;λ)

tn

n!
.

(3.2)
In a similar way, (3.1) follows as below

F̃ (t) =

∞∑
n=0

n∑
i=0

(
n

i

) i∑
l=1

(−1)i+lmi
1

[l]kp,q
l!S2(i, l)

n−i∑
r=0

(
n− i
r

)
an−i−rmn−i−r

1 mr
2

×B(k)
r,λ,p,q(am1x; a)σn−i−r(

m2 − 1

a
;λ)

tn

n!
.

(3.3)

Comparing the coefficients of tn

n! in (3.2) and (3.3), then it gives a symmetric
identity of the theorem. �

From the multinomial coefficient, the result of Theorem 3.4 is represented as
follows
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Corollary 3.5. Let m1,m2(m1 6= m2) ∈ N and n, k ∈ Z with n ≥ 0. Then we
obtain

∞∑
n=0

n∑
n1 + n2 + n3 = n
n1, n2, n3 ≥ 0

(
n

n1, n2, n3

) n1∑
l=1

(−1)n1+lmn1
2 l!

[l]kp,q
S2(n1, l)

×an3mn2
1 mn3

2 B
(k)
n2,λ,p,q

(am2x; a) σn3
(
m1 − 1

a
;λ)

tn

n!

=

∞∑
n=0

n∑
n1 + n2 + n3 = n
n1, n2, n3 ≥ 0

(
n

n1, n2, n3

) n1∑
l=1

(−1)n1+lmn1
1 l!

[l]kp,q
S2(n1, l)

×an3mn3
1 mn2

2 B
(k)
n2,λ,p,q

(am1x; a) σn3
(
m2 − 1

a
;λ)

tn

n!
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