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FRAMES†

JUNG MI KO AND YONG CHAN KIM∗

Abstract. In this paper, we introduce the notions of (dual) residuated

frames for a fuzzy logic as an extension of residuated frames for classical

relational semantics. We investigate the relations between residuated con-
nections and residuated frames on Alexandrov topologies based on [0,∞].

Moreover, we study their properties and give their examples.
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1. Introduction

Blyth and Janovitz [2] introduced the residuated connection as a pair of maps
on partially ordered sets. Many researchers [4,5,10,11] studied residuated frames
for relational semantics for a logic. Or lowska and Rewitzky [10,11] investigated
various residuated connections from the viewpoint of (dual) residuated frames
from many valued logics.

Pawlak [12,13] introduced the rough set theory as a formal tool to deal with
imprecision and uncertainty in the data analysis. Ward et al. [10] introduced
a complete residuated lattice L as an important algebraic structure for many
valued logics [1,6-9,14,15].

For an extension of Pawlak’s rough sets, many researchers developed L-
lower and L-upper approximation operators in complete residuated lattices [6-
9,14,15,18].

Discrete and stone dualities are dualities between algebras and logical rela-
tional systems such as Boolean algebras and classical propositional logic; MV-
algebra and Lukasiewicz logic; BL-algebra and basic fuzzy logics [3-5,17-19].
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In this paper, as a duality between algebras and logical relational systems,
we introduce the notion of (dual) residuated connections and (dual) residuated
frames in fuzzy logics. We investigate the relations between residuated connec-
tions and residuated frames on Alexandrov topologies based on [0,∞]. Moreover,
we study their properties and give their examples.

2. Preliminaries

Let ([0,∞],≤,∨,+,∧,↗,∞, 0) be a nonnegative extended real number de-
fined as

x↗ y =
∧
{z ∈ [0,∞] | z + x ≥ y} = (y − x) ∨ 0,

∞+ a = a+∞ =∞,∀a ∈ [0,∞],∞↗∞ = 0.

Definition 2.1. Let X be a set. A function dX : X × X → [0,∞] is called a
non-symmetric pseudo-metric if it satisfies the following conditions:

(M1) dX(x, x) = 0 for all x ∈ X,
(M2) dX(x, y) + dX(y, z) ≥ dX(x, z), for all x, y, z ∈ X.
(M3) If dX(x, y) = dX(x, y) = 0, x = y.
The pair (X, dX) is called a non-symmetric pseudo-metric space.

Remark 2.1. (1) We define a function d[0,∞]X : [0,∞]X × [0,∞]X → [0,∞]
as d[0,∞]X (A,B) =

∨
x∈X(A(x) → B(x)) =

∨
x∈X((B(x) − A(x)) ∨ 0). Then

([0,∞]X , d[0,∞]X ) is a non-symmetric pseudo-metric space.
(2) If (X, dX) is a non-symmetric pseudo-metric space and we define a function

d−1
X (x, y) = dX(y, x), then (X, d−1

X ) is a non-symmetric pseudo-metric space.
(3) Let (X, dX) be a non-symmetric pseudo-metric space and define (dX ⊕

dX)(x, z) =
∧
y∈X(dX(x, y) + dX(y, z)) for each x, z ∈ X. By (M2), (dX ⊕

dX)(x, z) ≥ dX(x, z) and (dX⊕dX)(x, z) ≤ dX(x, x)+dX(x, z) = d(x, z). Hence
(dX ⊕ dX) = dX .

(4) If dX is a non-symmetric pseudo-metric and dX(x, y) = dX(y, x) for each
x, y ∈ X, then dX is a pseudo-metric

(5) For x, y, z ∈ [0,∞], x+ y ≥ z iff x ≥ y ↗ z.

Lemma 2.2. For each x, y, z, xi, yi ∈ [0,∞], we have the following properties.
(1) If y ≤ z, x↗ y ≤ x↗ z and z ↗ x ≤ y ↗ x.
(2) x↗ (

∨
i∈Γ yi) =

∨
i∈Γ(x↗ yi) and (

∧
i∈Γ xi)↗ y =

∨
i∈Γ(xi ↗ y).

(3) x+ (x↗ y) ≥ y, (x↗ y)↗ y ≤ y and (x↗ y) + (y ↗ z) ≥ x↗ z.
(4) (x+ y)↗ z = x↗ (y ↗ z) = y ↗ (x↗ z).
(5) x↗ y ≥ (x+ z)↗ (y + z) and x↗ y ≥ (y ↗ z)↗ (x↗ z).
(6) x↗ x = 0 and 0↗ x = x.
(7)

∨
α∈[0,∞]((x↗ α)↗ (y ↗ α)) = y ↗ x for each x, y ∈ [0,∞],

Proof. (1) Since y ≤ z ≤ x+ (x↗ z), x↗ y ≤ x↗ z. Since x ≤ y+ (y ↗ x) ≤
z + (y ↗ x), z ↗ x ≤ y ↗ x.

(2) By (1), x ↗ (
∨
i∈Γ yi) ≥

∨
i∈Γ(x ↗ yi). Since x +

∨
i∈Γ(x ↗ yi) ≥∨

i∈Γ(x+ (x↗ yi)) ≥
∨
i∈Γ yi, x↗ (

∨
i∈Γ yi) ≤

∨
i∈Γ(x↗ yi).
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By (1), (
∧
i∈Γ xi) ↗ y ≥

∨
i∈Γ(xi ↗ y). Since (

∧
i∈Γ xi) +

∨
i∈Γ(xi ↗ y) ≥∧

i∈Γ(xi + (xi ↗ y)) ≥ y, (
∧
i∈Γ xi)↗ y ≤

∨
i∈Γ(xi ↗ y).

(3) Since x ↗ y ≥ x ↗ y, x + (x ↗ y) ≥ y. Moreover, x ≥ (x ↗ y) ↗ y.
Since x+ (x↗ y) + (y ↗ z) ≥ y + (y ↗ z) ≥ z, (x↗ y) + (y ↗ z) ≥ x↗ z.

(4) Since x + y + ((x + y) ↗ z) ≥ z iff x + ((x + y) ↗ z) ≥ y ↗ z,
(x+ y)↗ z ≥ x↗ (y ↗ z).

Since x+ y + (x↗ (y ↗ z)) ≥ y + (y ↗ z) ≥ z, x↗ (y ↗ z) ≥ (x+ y)↗ z.
Similarly, (x+ y)↗ z = y ↗ (x↗ z).
(5) Since (x + z) + (x ↗ y) ≥ y + z, x ↗ y ≥ (x + z) ↗ (y + z). Since

x+ (x↗ y) + (y ↗ z) ≥ z, x↗ y ≥ (y ↗ z)↗ (x↗ z).
(6) For x ∈ X, x ↗ x =

∧
{z ∈ [0,∞] | x + z ≥ x} = 0 and 0 ↗ x =

∧
{z ∈

[0,∞] | 0 + z ≥ x} = x.
(7) I =

∨
α∈[0,∞]((x↗ α)↗ (y ↗ α)) =

∨
α∈[0,∞]((y ↗ α)− (x↗ α)) ∨ 0 =∨

α∈[0,∞]((α−y)∨0−(α−x)∨0)∨0. If α ≥ x ≥ y, then I = x−y. If x ≥ α ≥ y,

then I = α− y ≤ x− y. Other cases, I = 0. Hence I = (x− y) ∨ 0 = y ↗ x.
�

3. Fuzzy join and meet preserving maps on Alexandrov
L-pretopologies

Definition 3.1. Let (X, dX) and (Y, dY ) be non-symmetric pseudo-metric spaces
and f : X → Y and g : Y → X maps.

(1) (dX , f, g, dY ) is called a residuated connection if for all x ∈ X, y ∈ Y ,
dY (f(x), y) = dX(x, g(y)).

(2) (dX , f, g, dY ) is called a dual residuated connection if for all x ∈ X, y ∈ Y ,
dY (y, f(x)) = dX(g(y), x).

We redefine the following definition as a sense in [6-8].

Definition 3.2. A subset τX ⊂ [0,∞]X is called an Alexandrov topology on X
iff it satisfies the following conditions:

(AT1) αX ∈ τX where αX(x) = α for each x ∈ X and α ∈ [0,∞].
(AT2) If Ai ∈ τX for all i ∈ I, then

∨
i∈I Ai,

∧
i∈I Ai ∈ τX .

(AT3) If A ∈ τX and α ∈ [0,∞], then α + A,α → A ∈ τX where (α →
A)(x) = (A(x)− α) ∨ 0.

The pair (X, τX) is called an Alexandrov topological space.

For R1 ∈ [0,∞]X×Y , R2 ∈ [0,∞]Y×Z , We define

R1 ⊕R2(x, z) =
∧
y

(R1(x, y) +R2(y, z)), R−1(y, x) = R(x, y).

Lemma 3.3. Let (X, dX) and (Y, dY ) be non-symmetric pseudo-metric spaces.
For R ∈ [0,∞]X×Y , we have the following properties:

(1) (dX ⊕R)−1 = R−1 ⊕ d−1
X and (R⊕ dX)−1 = d−1

X ⊕R−1.
(2) dX ⊕R⊕ dY ≥ R iff dX ⊕R ≥ R and R⊕ dY ≥ R .
(3) d−1

X ⊕R⊕ d
−1
Y ≥ R iff d−1

X ⊕R ≥ R and R⊕ d−1
Y ≥ R .
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Proof. (1) It is easily proved.
(2) It follows (dX ⊕ R ⊕ dY )(x, y) =

∧
y1∈Y ((dX ⊕ R)(x, y1) + dY (y1, y)) ≤

(dX ⊕R)(x, y) + dY (y, y) = (dX ⊕R)(x, y). Similarly, R⊕ dY ≥ R. Conversely,
it easily proved.

(3) is similarly proved as (2). �

Definition 3.4. Let (X, dX) and (Y, dY ) be non-symmetric pseudo-metric spaces.
For R ∈ [0,∞]X×Y , S ∈ [0,∞]Y×X , a structure (dX , R, S, dY ) is called:

(1) a residuated frame if S = R−1 and dX ⊕R⊕ dY ≥ R.
(2) a dual residuated frame if S = R−1 and d−1

X ⊕R⊕ d
−1
Y ≥ R.

Lemma 3.5. Let (X, dX) and (Y, dY ) be non-symmetric pseudo-metric spaces
and f : X → Y and g : Y → X maps. Then the followings hold.

(1) If (dX , f, g, dY ) is a residuated connection and define maps R : X × Y →
[0,∞] and S : Y ×X → [0,∞] as

R(x, y) = dX(x, g(y)) = dY (f(x), y), S(y, x) = R(x, y).

Then (dX , R, S, dY ) is a residuated frame.
(2) If (dX , f, g, dY ) is a dual residuated connection and define maps R : X ×

Y → [0,∞] and S : Y ×X → [0,∞] as

R(x, y) = dX(g(y), x) = dY (y, f(x)), S(y, x) = R(x, y).

Then (dX , R, S, dY ) is a dual residuated frame.
(3) If dX(g(y1), g(y2)) ≤ dY (y1, y2) for each y1, y2 ∈ Y and R1(x, y) =

dX(x, g(y)) (resp. R2(x, y) = dX(g(y), x)), then dX ⊕ R1 ⊕ dY ≥ R1 (resp.
d−1
X ⊕R2 ⊕ d−1

Y ≥ R2).
(4) If dY (f(x1), f(x2)) ≤ dX(x1, x2) for each x1, x2 ∈ X and R1(x, y) =

dY (y, f(x)) (resp. R2(x, y) = dY (f(x), y)), then d−1
X ⊕ R1 ⊕ d−1

Y ≥ R1 (resp.
dX ⊕R2 ⊕ dY ≥ R2).

Proof. (1) For each x, x1 ∈ X, y, y1 ∈ Y ,

dX(x, x1) +R(x1, y1) + dY (y1, y)
= dX(x, x1) + dX(x1, g(y1)) + dY (y1, y)
≥ dX(x, g(y1)) + dX(y1, y)
= dY (f(x), y1) + dY (y1, y)
≥ dY (f(x), y) = R(x, y)

Hence dX ⊕R⊕ dY ≥ R.
(3) For each x, x1 ∈ X, y, y1 ∈ Y ,

dX(x, x1) +R1(x1, y1) + dY (y1, y)
= dX(x, x1) + dX(x1, g(y1)) + dY (y1, y)
≥ dX(x, x1) + dX(x1, g(y1)) + dX(g(y1), g(y))
≥ dX(x, x1) + dX(x1, g(y))
≥ dX(x, g(y)) = R(x, y)

Hence dX ⊕R1 ⊕ dY ≥ R1.
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Other case, (2) and (4) are similarly proved.
�

Theorem 3.6. Let (X, dX) and (Y, dY ) be non-symmetric pseudo-metric spaces
and R ∈ [0,∞]X×Y . Define

τdX = {A ∈ [0,∞]X | A(x) + dX(x, z) ≥ A(z)},

τdY = {B ∈ [0,∞]Y | B(y) + dY (y, w) ≥ B(w)}.

Then the followings hold.
(1) τdX and τdY are Alexandrov topologies on X.
(2)If (dX)x = dX(x,−) ∈ [0,∞]X and ((dX)−1

x ↗ α)(z) = (dX)−1
x (z)↗ α =

dX(z, x)↗ α , then (dX)x ∈ τdX and (dX)−1
x ↗ α ∈ τdX .

(3) If dX ⊕ R ≥ R for R ∈ [0,∞]X×Y and put R−1
y (x) = R(x, y) for each

x ∈ X, then (R−1
y ↗ α) ∈ τdX and R−1

y ∈ τd−1
X

. Moreover,
∨
y∈Y (R(−, y) ↗

B(y)) ∈ τdX and
∧
y∈Y (B(y) +R(−, y)) ∈ τd−1

X
.

(4) If d−1
X ⊕R ≥ R for R ∈ [0,∞]X×Y , then R−1

y ∈ τdX and α↗ R−1
y ∈ τdX .

Moreover,
∧
y∈Y (R(−, y) +B(y)) ∈ τdX and

∨
y∈Y (B(y)↗ R(−, y)) ∈ τdX .

(5) If R⊕dY ≥ R for R ∈ [0,∞]X×Y and put Rx(z) = R(x, z), then Rx ∈ τdX
and α↗ Rx ∈ τdY . Moreover,

∧
x∈X(R(x,−) +A(x)) ∈ τdY and

∨
x∈X(A(x)↗

R(x,−)) ∈ τdY .
(6) If R⊕ d−1

Y ≥ R for R ∈ [0,∞]X×Y , then (Rx ↗ α) ∈ τdY and Rx ∈ τd−1
Y

.

Moreover,
∨
x∈X(R(x,−)↗ A(x)) ∈ τdY and

∧
x∈X(R(x,−) +A(x)) ∈ τd−1

Y
.

(7) Define dτdX : τdX × τdX → [0,∞] as dτdX (A,B) =
∨
x∈X(A(x) ↗ B(x)).

Then (τdX , dτdX ) is a non-symmetric pseudo-metric space.

Proof. (1) Since αX(x) + dX(x, y) ≥ αX(y), we have αX ∈ τdX .
If Ai ∈ τdX for all i ∈ I, then

(
∧
i∈I Ai) + dX(x, y) =

∧
i∈I(Ai + dX(x, y)) ≥

∧
i∈I Ai,

(
∨
i∈I Ai) + dX(x, y) =

∨
i∈I(Ai + dX(x, y)) ≥

∨
i∈I Ai,

then
∧
i∈I Ai,

∨
i∈I Ai ∈ τdX .

If A ∈ τdX and α ∈ L, then α+ (α↗ A(x)) + dX(x, y) ≥ A(x) + dX(x, y) ≥
A(y) implies (α ↗ A(x)) + dX(x, y) ≥ (α ↗ A(y)). So, α ↗ A ∈ τdX . Easily,
α+A ∈ τdX . Hence τdX is an Alexandrov topology on X.

Similarly, τdY is an Alexandrov topology on Y .
(2) Since (dX)x(y) +dX(y, z) ≥ (dX)x(z), (dX)x ∈ τdX . Moreover, (dX)−1

x ↗
α) ∈ τdX from

(dX(z, x)↗ α) + dX(z, w) + dX(w, x) ≥ (α− dX(z, x)) ∨ 0 + dX(z, x) ≥ α,
(⇒)(dX(z, x)↗ α) + dX(z, w) ≥ (α− dX(w, x)) ∨ 0
(⇒)(d−1

x (z)↗ α) + dX(z, w) ≥ d−1
x (w)↗ α.
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(3) Since dX(x, y)+R(y, z) ≥ (dX⊕R)(x, z) ≥ R(x, z) iff d−1
X (y, x)+R−1

z (y) ≥
R−1
z (x), R−1

z ∈ τd−1
X

. We have (R−1
y ↗ α) ∈ τdX from:

(R−1
y (x)↗ α) + dX(x, z) +R(z, y) ≥ (R−1

y (x)↗ α) +R(x, y) ≥ α
(⇒) (R−1

y (x)↗ α) + dX(x, z) ≥ (R−1
y (z)↗ α).

Moreover, by (1),
∨
y∈Y (R(−, y) ↗ B(y)) ∈ τdX and

∧
y∈Y (B(y) + R(−, y)) ∈

τd−1
X

.

(4) Since d−1
X (x, y) + R(y, z) ≥ R(x, z), R−1

z ∈ τdX . By (1), α↗ R−1
y ∈ τdX .

Moreover,
∧
y∈Y (R(−, y) +B(y)) ∈ τdX and

∨
y∈Y (B(y)↗ R(−, y)) ∈ τdX .

(5) Since R(x, y) + dY (y, z) ≥ R(x, z), Rx ∈ τdY . By (1), α ↗ Rx ∈ τdY ,∧
x∈X(R(x,−) +A(x)) ∈ τdY and

∨
x∈X(A(x)↗ R(x,−)) ∈ τdY .

(6) Since R(x,w) + d−1
Y (w, y) ≥ R(x, y), Rx ∈ τd−1

Y
. (Rx ↗ α) ∈ τdY from

(Rx(y)↗ α) + dY (y, w) +R(x,w) ≥ (Rx(y)↗ α) +R(x, y) ≥ α
(⇒)(Rx(y)↗ α) + dY (y, w) ≥ R(x,w)↗ α.

Moreover,
∨
x∈X(R(x,−)↗ A(x)) ∈ τdY and

∧
x∈X(R(x,−) +A(x)) ∈ τd−1

Y
.

(7) (M1) dτdX (A,A) =
∨
x∈X(A(x)→ A(x)) = 0 for all A ∈ τdX ,

(M2) Since dτdX (A,B)+dτdX (B,C) =
∨
x∈X(A(x)→ B(x))+

∨
x∈X(B(x)→

C(x)) ≥
∨
x∈X((B(x)−A(x))∨0)+(C(x)−B(x))∨0 ≥

∨
x∈X((C(x)−A(x))∨0) =

dτdX (A,C), for all A,B,C ∈ τX ,

(M3) If dτdX (A,B) = dτdX (B,A) = 0, A = B.
�

If (X, dX) is a non-symmetric pseudo-metric space, then dX ⊕ dX = dX and
d−1
X ⊕ d

−1
X = d−1

X . From Theorem 3.6, the following corollary hold.

Corollary 3.7. If (X, dX) is a non-symmetric pseudo-metric space, then
(dX)x, ((dX)−1

z ↗ α),
∧
x∈X(dX(x,−) +A(x)),

∨
x∈X(A(x)↗ dX(x,−)),∨

y∈X(dX(−, y)↗ B(y)) ∈ τdX .

Theorem 3.8. Let (X, dX) and (Y, dY ) be non-symmetric pseudo-metric spaces.
Let τdX and τdY be Alexandrov topologies. Then the followings hold.

(1) (dX , f, g, dY ) is a residuated connection, that is, dY (f(x), y) = dX(x, g(y))
for all x, y ∈ X iff there exist relations R : τdX×τdY → [0,∞] and S : τdY ×τdX →
[0,∞] as

R(A,B) =
∨
x∈X

(A(x)↗ B(f(x))),

S(B,A) =
∨
y∈Y

(A(g(y))↗ B(y))

with maps f : X → Y , g : Y → X and dX(x1, x2) ≥ dY (f(x1), f(x2)),
dY (y1, y2) ≥ dX(g(y1), g(y2)), for each x1, x2 ∈ X, y1, y2 ∈ Y such that
(dτdX , R, S, dτdY ) is a residuated frame.

(2) In (1),

R(A,B) = dτdX (A, f←(B)) = dτdY (F (A), B) = dτdX (A,G(B))
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where F (A)(y) =
∧
z∈X(dY (f(z), y) + A(z)) and G(B) =

∨
y∈Y (dY (f(z), y) ↗

B(y))).

S(B,A) = dτdY (g←(A), B) = dτdY (F1(A), B) = dτdX (A,G1(B))

where F1(A)(w) =
∧
z∈X(dY (z, g(w))+A(z)) and G1(B)(z) =

∨
w∈Y (dY (z, g(w))

↗ B(w)).

Proof. (1) (⇒) For x ∈ X and y ∈ Y , dX(x, g(f(x))) = dY (f(x), f(x)) =
0 and dY (f(g(y)), y) = dX(g(y), g(y)) = 0. Moreover, dY (f(x1), f(x2)) =
dX(x1, g(f(x2)) ≤ dX(x1, x2) + dX(x2, g(f(x2)) = dX(x1, x2) for each x1, x2 ∈
X and dX(g(y1), g(y2)) = dY (f(g(y1), y2) ≤ dX(f(g(y1), y1) + dY (y1, y2) =
dY (y1, y2) for each y1, y2 ∈ Y .

For A ∈ τdX and B ∈ τdY , since B(f(g(y))) + dY (f(g(y)), y) ≥ B(y),
dY (f(g(y)), y) = 0, A(x)+dX(x, g(f(x))) ≥ A(g(f(x))) and dX(x, g(f(x))) = 0,
we have R(A,B) = S(B,A) from:

R(A,B) =
∨
x∈X(A(x)↗ B(f(x)))

≥
∨
y∈Y (A(g(y))↗ B(f(g(y))) + dY (f(g(y)), y))

≥
∨
y∈Y (A(g(y))↗ B(y)) = S(B,A),

S(B,A) =
∨
y∈Y (A(g(y))↗ B(y))

≥
∨
x∈X(A(g(f(x)))↗ B(f(x)))

≥
∨
x∈X(A(x) + dX(x, g(f(x)))↗ B(f(x))) = R(A,B).

For each A,A1 ∈ τdX , B,B1 ∈ τdY , we have dτdX ⊕R⊕ dτdY ≥ R from:

dτdX (A,A1) +R(A1, B1) + dτdY (B1, B)

= dτdX (A,A1) +
∨
x∈X(A1(x)↗ B1(f(x))) +

∨
x∈X(B1(f(x))↗ B(f(x)))

≥
∨
x∈X(A(x)↗ B(f(x))) = R(A,B).

(⇐) For (dX)x ∈ τdX and ((dY )−1
y ↗ α) ∈ τdY from Theorem 3.6(2),

R((dX)x, ((dY )−1
y ↗ α)) =

∨
z∈X((dX)x(z)↗ ((dY )−1

y ↗ α)(f(z)))
≥ (dX)x(x)↗ ((dY )−1

y ↗ α)(f(x)) = dY (f(x), y)↗ α

Since dX(x, z)+dY (f(z), y) ≥ dY (f(x), f(z))+dY (f(z), y) ≥ dY (f(x), y), dX(x, z)
↗ (dY (f(z), y) ↗ α) ≤ dY (f(x), y) ↗ α. Hence R((dX)x, ((dY )−1

y ↗ α)) =
dY (f(x), y)↗ α.

S(((dY )−1
y ↗ α), (dX)x) =

∨
z∈X((dX)x(g(z))↗ ((dY )−1

y ↗ α)(z))
≤ (dX)x(g(y))↗ ((dY )−1

y ↗ α)(y) = dX(x, g(y))↗ α

Since dX(x, g(z)) + dY (z, y) ≤ dX(x, g(z)) + dX(g(z), g(y)) ≥ dX(x, g(y)),
dX(x, g(z)) ↗ (dY (z, y) ↗ α) ≤ dX(x, g(y)) ↗ α. Hence S(((dY )−1

y ↗
α), (dX)x) = dX(x, g(y)) ↗ α. Thus dY (f(x), y) ↗ α = dX(x, g(y)) ↗ α
for all x, y ∈ X from:

R((dX)x, ((dY )−1
y ↗ α)) = dY (f(x), y)↗ α

= S(((dY )−1
y ↗ α), (dX)x) = dX(x, g(y))↗ α.
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Put α = dX(x, g(y)). Since dY (f(x), y)↗ dX(x, g(y)) = dX(x, g(y))↗
dX(x, g(y)) = 0, dY (f(x), y) ≥ dX(x, g(y)). Put α = dY (f(x), y). Similarly,
dY (f(x), y) ≤ dX(x, g(y)). Hence dY (f(x), y) = dX(x, g(y)).

(2) For A ∈ τdX and B ∈ τdY , since A =
∧
z∈X(A(z) + dX(z,−)) and B =∨

α∈[0,∞]

∨
y∈Y ((B(y)↗ α)↗ (dY (−, y)↗ α)) =

∨
y∈Y (dY (−, y)↗ B(y)),

R(A,B) =
∨
x∈X(A(x)↗ B(f(x)))

=
∨
x∈X(

∧
z∈X(A(z) + dX(z, x))↗

∨
y∈Y (dY (f(x), y)↗ B(y)))

=
∨
x,y,z∈X((B(y)− dY (f(x), y)) ∨ 0− (A(z) + dX(z, x))) ∨ 0

=
∨
y,z∈X((B(y)−A(z))−

∧
x∈X(dY (f(x), y) + dX(z, x))) ∨ 0

=
∨
y,z∈X((B(y)−A(z))−

∧
x∈X(dX(x, g(y)) + dX(z, x))) ∨ 0

=
∨
y,z∈X((B(y)−A(z))− dX(z, g(y))) ∨ 0

=
∨
y∈X(B(y)−

∧
z∈X(A(z) + dX(z, g(y))) ∨ 0 = dτdY (F (A), B)

=
∨
z∈X(

∨
y∈X(B(y)− dX(z, g(y)))−A(z)) ∨ 0

=
∨
z∈X(A(z)↗

∨
y∈Y (dY (f(z), y)↗ B(y))) = dτdX (A,G(B)).

S(B,A) =
∨
y∈Y (A(g(y))↗ B(y))

=
∨
y∈Y (

∧
z∈X(A(z) + dX(z, g(y)))↗

∨
w∈Y (dY (y, w)↗ B(w)))

=
∨
y,z,w∈Y ((B(w)− dY (y, w)) ∨ 0− (A(z) + dX(z, g(y)))) ∨ 0

=
∨
y,z,w∈Y ((B(w)−A(z)−

∧
y∈Y (dY (y, w) + dX(z, g(y)))) ∨ 0)

=
∨
y,z,w∈Y ((B(w)−A(z)−

∧
y∈Y (dY (y, w) + dY (f(z), y))) ∨ 0)

=
∨
y,z,w∈Y ((B(w)−A(z)− dY (f(z), w)) ∨ 0)

=
∨
w∈X(B(w)−

∧
z∈X(A(z) + dY (f(z), w))) ∨ 0 = dτdY (F1(A), B)

=
∨
z∈X(

∨
w∈X(B(w)− dX(z, g(w)))−A(z)) ∨ 0

= dτdX (A,G1(B)).

�

Theorem 3.9. Let (X, dX) and (Y, dY ) be non-symmetric pseudo-metric spaces.
Then the followings hold.

(1) If R : X × Y → [0,∞] with dX ⊕R ≥ R and R⊕ dY ≥ R such that

F (A)(y) =
∧
x∈X

(A(x) +R(x, y)), G(B)(x) =
∨
y∈Y

(R(x, y)↗ B(y)),

then (dτdX , F,G, dτdY ) is a residuated connection.

(2) If R : X × Y → [0,∞] with d−1
X ⊕R ≥ R, R⊕ d−1

Y ≥ R such that

F (A)(y) =
∨
x∈X

(R(x, y)↗ A(x)), G(B)(x) =
∧
y∈Y

(R(x, y) +B(y)),

then (dτdX , F,G, dτdY ) is a dual residuated connection.
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Proof. (1) Since R ⊕ dY ≥ R, by Theorem 3.6(5), F (A) =
∧
x∈Y (R(x,−) +

A(x)) ∈ τdY . Since dX ⊕R ≥ R, by Theorem 3.6(3), G(B) =
∨
x∈X(R(−, y)↗

B(y)) ∈ τdX . Moreover,

dτdY (F (A), B) =
∨
y∈Y (F (A)(y)↗ B(y))

=
∨
y∈Y

(∧
x∈X(R(x, y) +A(x))↗ B(y)

)
=
∨
y∈Y

(
(B(y)−

∧
x∈X(R(x, y) +A(x))) ∨ 0

)
=
∨
y∈Y

∨
x∈X

(
(B(y)−R(x, y)−A(x))) ∨ 0

)
=
∨
y∈Y

∨
x∈X

(
(((B(y)−R(x, y)) ∨ 0)−A(x)) ∨ 0

)
=
∨
x∈X

∨
y∈Y

(
A(x)↗ (R(x, y)↗ B(y))

)
=
∨
x∈X

(
A(x)↗

∨
x∈X(R(x, y)↗ B(y))

)
=
∨
x∈X

(
A(x)↗ G(B)(x)

)
= dτdX (A,G(B)).

(2) Since R⊕d−1
Y ≥ R, by Theorem 3.6(6), F (A) =

∨
x∈X(R(x,−)↗ A(x)) ∈

τdY . Since d−1
X ⊕R ≥ R, by Theorem 3.6(4), G(B) =

∧
x,y∈Y (B(y) +R(−, y)) ∈

τdX .

dτdY (B,F (A)) =
∨
y∈Y (B(y)↗

∨
x∈X(R(x, y)↗ A(x)))

=
∨
y∈Y

∨
x∈X

(
(((A(x)−R(x, y)) ∨ 0)−B(x)) ∨ 0

)
=
∨
y∈Y

∨
x∈X

(
(A(x)−

∨
y∈Y (R(x, y) +B(y))) ∨ 0

)
=
∨
x∈X(G(B)(x)↗ A(x)) = dτdX (G(B), A).

�

Example 3.10. Let (X = {a, b, c}, di) be non-symmetric pseudo-metric spaces
and Ri ∈ [0,∞]X i = 1, 2 as follows:

d1 =

 0 6 5
6 0 7
5 7 0

 d2 =

 0 7 5
4 0 3
3 5 0



R1 =

 3 1 2
1 0 2
2 3 5

 R2 =

 7 4 3
6 8 5
3 5 8

 .

(1) Since R1 ⊕ d1 = R1 = d1 ⊕ R1, by Theorem 3.9(1), (dτd1 , F,G, dτd1 ) is a

residuated connection where F (A)(y) =
∧
x∈X(A(x) + R2(x, y)), G(B)(x) =∨

y∈Y (R1(x, y)↗ B(y)).

Since R1⊕d−1
1 = R1 = d−1

1 ⊕R1, by Theorem 3.9(2), (dτd1 , F,G, dτd1 ) is a dual

residuated connection where F (A)(y) =
∨
x∈X(R1(x, y) ↗ A(x)), G(B)(x) =∧

y∈Y (R1(x, y) +B(y)).
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(2) Since

R2 ⊕ d2 = d−1
2 ⊕R2 =

 6 4 3
6 8 5
3 5 8

 d2 ⊕R2 = R2 ⊕ d−1
2 =

 7 4 3
6 8 5
3 5 6


By Theorem 3.9(1), let F (A)(y) =

∧
x∈X(A(x) +R2(x, y)), G(B)(x) =

∨
y∈Y

(R2(x, y)↗ B(y)). Since

6 = F (d2(a,−))(c) + d2(c, a) = R2(a, c) + d2(c, a)
6≥ R2(a, a) = F (d2(a,−))(a) = 7,

F (d2(a,−)) 6∈ dτd2 . Hence (dτd2 , F,G, dτd2 ) is not a residuated connection.

By Theorem 3.9(2), let F1(A)(y) =
∧
x∈X(R2(x, y) ↗ A(x)), G1(B)(x) =∨

y∈Y (R2(x, y) +B(y)).

6 = G(d2(a,−))(c) + d2(c, a) = d−1
2 (a, c) +R2(c, a)

6≥ R2(a, a) = G(d2(a,−))(a) = 7.

Hence (dτd2 , F,G, dτd2 ) is not a dual residuated connection.

(3) Let (X = {a, b, c}, d2) be a non-symmetric pseudo-metric space and
f : X → X a function as f(a) = f(b) = b, f(c) = c. Then d2(x, y) ≥
d2(f(x), f(y)) for all x, y ∈ X. Put R1(x, y) = d2(y, f(x)) and R2(x, y) =
d2(f(x), y). By Lemma 3.5(4), d−1

2 ⊕ R1 ⊕ d−1
2 ≥ R1 and d2 ⊕ R2 ⊕ d2 ≥ R2.

Let F2, G2 : τd2 → τd2 be functions with F2(A)(y) =
∧

(A(x) + d2(f(x), y)) and
G2(B)(x) =

∨
y∈X(d2(f(x), y)↗ B(y)). By Theorem 3.9(1), (dτd2 , F2, G2, dτd2 )

is a residuated connection.
Let F1, G1 : τd2 → τd2 be a function with F1(A)(y) =

∨
y∈X(d2(y, f(x)) ↗

A(x)) and G1(B)(x) =
∧

(d2(y, f(x)) +B(y)). By Theorem 3.9(2),
(dτd2 , F1, G1, dτd2 ) is a dual residuated connection.
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