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FIXED-POINT-LIKE METHOD FOR A NEW TOTAL

VARIATION-BASED IMAGE RESTORATION MODEL†

YU JIN WON AND JAE HEON YUN∗

Abstract. In this paper, we first propose a new total variation-based

regularization model for image restoration. We next propose a fixed-point-

like method for solving the new image restoration model, and then we
provide convergence analysis for the fixed-point-like method. To evaluate

the feasibility and efficiency of the fixed-point-like method for the new
proposed total variation-based regularization model, we provide numerical

experiments for several test problems.
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1. Introduction

Image restoration is the essential problem in image processing which recovers
a true image from a blurred and noisy image. The problem of image restoration

usually reduces to find the optimal solution u ∈ Rn2

based on the following
model:

f = Au+ ε, (1)

where A ∈ Rn2×n2

is a blurring operator, ε ∈ Rn2

is an unknown white Gaussian
noise with variance σ, f denotes an observed degraded image and u denotes the
original image. Our purpose is to restore the original image u from blurred and
noisy image f as well as possible.

Over the past few decades, optimization techniques and various variation
models have been widely studied and applied in many image processing fields.
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The well-known ROF (Rudin-Osher-Fatemi) total variation model [13] produces
the deblurred image given by the following minimization problem:

min
u∈Rn2

{
1

2
‖Au− f‖22 + βTV (u)

}
, (2)

where A ∈ Rn2×n2

is a blurring matrix, u ∈ Rn2

is an original image, f ∈ Rn2

is a degraded image, TV (u) is the total variation (TV) of u, and β > 0 is a
regularization parameter.

Many computational methods for solving the problem (2) have been proposed
in recent years. For instance, the subgradient descent method, the split Breg-
man method, the fixed-point method, and the fixed-point-like method have been
proposed by many researchers [1, 4, 5, 6, 7, 9, 10, 11, 14, 15, 16].

Recently, Chen et al. [6] proposed a fixed-point method for solving the fol-
lowing regularization model for image restoration, called TVL2I2,

min
u∈Rn2

{
1

2
‖Au− f‖22 +

α

2
‖u‖22 + βTV (u)

}
, (3)

where α and β are positive regularization parameters. This approach motivates
us to propose a new regularization model for image restoration, called TVL2D2,

min
u∈Rn2

{
1

2
‖Au− f‖22 +

α

2
‖Du‖22 + βTV (u)

}
, (4)

where α and β are positive regularization parameters, D = −∆ and ∆ denotes
a discrete Laplacian operator, and TV (u) represents the isotropic TV of u. The
isotropic TV of u is defined by

TV (u) =

n2∑
k=1

√
|(∇u)xk|

2
+
∣∣∣(∇u)yn2+k

∣∣∣2 =

n2∑
k=1

∥∥∥∥∥
(

(∇u)xk
(∇u)yn2+k

)∥∥∥∥∥
2

,

where the discrete gradient operator ∇ : Rn2 → R2n2

is defiend by

(∇u)k = ((∇u)xk, (∇u)yn2+k)T , k = 1, 2, · · · , n2

with

(∇u)xk =

{
0 if k mod n = 1

uk − uk−1 if k mod n 6= 1
and (∇u)yn2+k =

{
0 if k ≤ n

uk − uk−n if k > n

Notice that the TVL2I2 problem (3) has a unique solution since its objective
function is strictly convex, while the new TVL2D2 problem (4) may not have
a unique solution since its objective function is not strictly convex, but just
convex.

The purpose of this paper is to propose a fixed-point-like method for solving
the new proposed TVL2D2 problem (4). This paper is organized as follows. In
the second section, we introduce some definitions and properties that are used
in this paper. In the third section, we review the fixed-point method for solving
the existing TVL2I2 problem (3). In the fourth section, we first propose a fixed-
point-like method for solving the new TVL2D2 problem (4), and then we provide
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a convergence analysis for the fixed-point-like method. In the fifth section, we
just provide the split Bregman method for solving the TVL2D2 problem (4) to
see how efficiently the fixed-point-like method performs. In the sixth section,
we provide numerical experiments for several test problems in order to evaluate
the effectiveness of the fixed-point-like method for solving the new proposed
TVL2D2 problem (4). Lastly, some conclusions are drawn.

2. Preliminaries

In this section, we provide some definitions and important properties which
we refer to later.

Definition 2.1. Let ψ : Rn → (−∞,∞] be a proper function, and let dom(ψ)
denote the domain of ψ, that is, dom(ψ) = {x ∈ Rn : ψ(x ) <∞}. For an x ∈
dom(ψ), the subdifferential of ψ at x ∈ Rn is defined by

∂ψ(x) = {y ∈ Rn : ψ(z) ≥ ψ(x) + 〈y, z − x〉, ∀z ∈ Rn}. (5)

Theorem 2.2 ([2]). Let ψ : Rn → (−∞,∞] be a proper convex function, and
assume that x ∈ int(dom(ψ)). Then ∂ψ(x) is nonempty and bounded.

Definition 2.3. Let ψ : Rn → Rn be a non-linear operator. ψ is non-expansive
if for any x, y ∈ Rn,

‖ψ(x)− ψ(y)‖2 ≤ ‖x− y‖2. (6)

Definition 2.4. Let ψ : Rn → Rn be a non-linear operator. ψ is firmly non-
expansive if for any x, y ∈ Rn,

‖ψ(x)− ψ(y)‖22 ≤ 〈x− y, ψ(x)− ψ(y)〉 . (7)

It is easy to show that if a non-linear operator ψ : Rn → Rn is firmly non-
expansive, then ψ is non-expansive.

Definition 2.5. Let ψ : Rn → R ∪ {+∞} be a proper, convex, and lower
semi-continuous function. The proximity operator of ψ at x ∈ Rn is defined by

proxψ(x) = arg min
u

{
ψ(u) +

1

2
‖u− x‖22 : u ∈ Rn

}
. (8)

Proposition 2.6 ([6, 9]). Let ψ : Rn → Rn be a convex function. For x, y ∈ Rn,

y ∈ ∂ψ(x) ⇔ x = proxψ(x + y).

Let ϕ : R2n2 → R be a convex function defined by

ϕ(d) =

n2∑
i=1

∥∥∥∥( di
dn2+i

)∥∥∥∥
2

for each d = (di) ∈ R2n2

, (9)

and let B be a 2n2 × n2 matrix that represents a discrete gradient operator ∇.
Then the matrix B can be expressed as

B =

(
In ⊗D1

D1 ⊗ In

)
∈ R2n2×n2

,



522 Yu Jin Won and Jae Heon Yun

where In is the identity matrix of order n, ⊗ denotes the Kronecker product,
and

D1 =



0 0 0 · · · · · · 0

−1 1 0
. . .

...

0 −1 1
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0
...

. . . −1 1 0

0 · · · · · · 0 −1 1


,

which is a matrix of order n. Hence, TV (u) can be represented by

TV (u) = (ϕ ◦B)(u). (10)

Since D is a discrete Laplacian operator, D can be expressed as

D = (In ⊗D2 +D2 ⊗ In) ∈ Rn
2×n2

,

where

D2 =



1 −1 0 · · · · · · 0

−1 2 −1
. . .

...

0 −1 2 −1
. . .

...
...

. . .
. . .

. . .
. . . 0

...
. . . −1 2 −1

0 · · · · · · 0 −1 1


,

which is a matrix of order n.

3. Fixed-point Method for the TVL2I2 Problem

In this section, we briefly review the fixed-point method proposed in [6] for
solving the TVL2I2 problem (3) for the purpose of comparison with a fixed-
point-like method to be proposed in this paper. The fixed-point method, called
Algorithm 1, for the TVL2I2 problem (3) is described below (see [6] for the
detailed description of this algorithm).

In this paper, the linear system in line 6 of Algorithm 1 is solved using the
CGLS (Conjugate gradient least squares method) [3] instead of using the CG
(Conjugate gradient method) [8].

4. Fixed-point-like method for the TVL2D2 Problem

In this section, we first propose a fixed-point-like method for solving the
TVL2D2 regularization problem (4), and then we provide a convergence analysis
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Algorithm 1 Fixed-point method for the TVL2I2 problem (3)

1: Given : observed image f , positive parameters α, β, γ, and κ ∈ (0, 1)

2: Initialization : b0 = 0 and u0 = f

3: for k = 0 to maxit do

4: b̂k+1 =
(
I − prox β

γ ϕ

) (
Buk + bk

)
5: bk+1 = κbk + (1− κ) b̂k+1

6: Solve
(
ATA+ αI

)
uk+1 = AT f − γBT bk+1 for uk+1

7: if ‖uk+1−uk‖2
‖uk+1‖2 < tol then

8: Stop

9: end if

10: end for

for the fixed-point-like method. Using (10), the TVL2D2 problem (4) can be
expressed as

min
u∈Rn2

{
1

2
‖Au− f‖22 +

α

2
‖Du‖22 + β(ϕ ◦B)(u)

}
. (11)

Theorem 4.1. If u is a solution of the TVL2D2 problem (11), then for any

γ > 0 there exists a vector b ∈ R2n2

such that

b = (I − prox β
γ ϕ

)(Bu + b), (12)

(ATA+ αDTD)u = AT f − γBT b. (13)

Conversely, if there exist γ > 0, b ∈ R2n2

and u ∈ Rn2

satisfying (12) and (13),
then u is a solution of the TVL2D2 problem (11).

Proof. Assume that u is a solution of (11). Using the Fermet’s rule for the
equation (11), we can obtain

0 ∈ AT (Au− f) + αDTDu+ βBT ◦ (∂ϕ) ◦ (Bu).

This relation is equivalent to

0 ∈ (ATA+ αDTD)u−AT f + βBT ◦ (∂ϕ) ◦ (Bu). (14)

From (14), for any γ > 0 we can choose b ∈ ∂(βγϕ)(Bu) satisfying

AT (Au− f) + αDTDu+ γBT b = 0 (15)

By Proposition 2.6, the relation b ∈ ∂(βγϕ)(Bu) implies

Bu = prox β
γ ϕ

(Bu + b) (16)

From (15) and (16), we obtain (12) and (13).
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Conversely, suppose that there exist γ > 0, b ∈ R2n2

and u ∈ Rn2

satisfying
(12) and (13). From (13), we obtain the equation (15). By Proposition 2.6, (12)

ensures that b ∈ ∂(βγϕ)(Bu). Therefore, we obtain

0 = AT (Au− f) + αDTDu+ γBT b

∈ AT (Au− f) + αDTDu+ βBT ◦ (∂ϕ) ◦ (Bu).

Consequently, (14) holds. Thus, u is a solution of (11). �

From (12) and (13), we can develop a fixed-point algorithm which converges
to a solution to (4). We now describe how to develop the fixed-point algorithm.
Let u be an approximate solution to the ill-conditioned linear system (12). Then,
u can be expressed as

u = Mα(AT f − γDTD) (17)

where Mα is a symmetric positive semi-definite matrix approximating a solution
of (13). For example, we can choose Mα = (ATA + αDTD)†r, which is the
truncated pseudoinverse of ATA + αDTD using the r largest positive singular
values.

Substituting (17) into (12), one obtains

b = (I − prox β
γ ϕ

)((I − γBMαBT )b + BMαAT f ) (18)

We introduce the affine transformation L : R2n2 → R2n2

defined by

L(b) = (I − γBMαB
T )b+BMαA

T f at a vector b ∈ R2n2

(19)

and the operator G : R2n2 → R2n2

given by

G = (I − prox β
γ ϕ

) ◦ L. (20)

Then, (18) can be expressed as
b = Gb. (21)

In other words, G has a fixed point.

Since prox β
γ ϕ

and
(
I − prox β

γ ϕ

)
are firmly non-expansive, they are non-

expansive. Using these properties, we can obtain the following theorem.

Theorem 4.2. If α and γ are positive parameters such that ‖I−γBMαB
T ‖2 ≤

1, then the operator G defined by (20) is non-expansive.

Proof. Since I − prox β
γ ϕ

is non-expansive and ‖I − γBMαB
T ‖2 ≤ 1, for all

b1, b2 ∈ R2n2

‖G(b1)−G(b2)‖2 ≤ ‖(I − prox β
γ ϕ

)(L(b1 ))− (I − prox β
γ ϕ

)(L(b2))‖2
≤ ‖L(b1)− L(b2)‖2
= ‖(I − γBMαB

T )(b1 − b2)‖2
≤ ‖I − γBMαB

T ‖2 · ‖b1 − b2‖2
≤ ‖b1 − b2‖2.
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Thus, G is non-expansive. �

Definition 4.3. Let S : Rn → Rn be an operator. Then, the Picard iteration
of S is defined by

xk+1 = Sxk, for k = 0, 1, 2, · · ·
for a given vector x0 ∈ Rn.

Definition 4.4. Let S : Rn → Rn be an operator and κ ∈ (0, 1). Then, the
κ-averaged operator Sκ of S is defined by

Sκ = κI + (1− κ)S.

Proposition 4.5 ([6, 12]). Let C ⊂ R2n2

be a closed convex set and S : C → C
be a non-expansive mapping with at least one fixed point. Then, for any ω0 ∈ C
and κ ∈ (0, 1), the Picard iteration of Sκ converges to a fixed point of S.

Theorem 4.6. Let G be the operator defined by (20). If α and γ are positive
parameters such that ‖I − γBMαB

T ‖2 ≤ 1, then for any κ ∈ (0, 1) the Picard
iteration of Gκ converges to a fixed point of G.

Proof. Since G has a fixed point from (21) and G is non-expansive by Theorem

4.2, for any x0 ∈ R2n2

and κ ∈ (0, 1) the Picard iteration of Gκ converges to a
fixed point of G by Proposition 4.5 �

From Theorem 4.6 and the Picard iteration of the κ-averaged operator Gκ =
κI + (1− κ)G of G, we can obtain a fixed-point method, called Algorithm 2,
which converges to a solution to the TVL2D2 problem (4).

Algorithm 2 Fixed-point method for the TVL2D2 problem (4)

1: Given : observed image f , positive parameters α, β, γ, and κ ∈ (0, 1)

2: Initialization : b0 = 0 and u0 = f

3: for k = 0 to maxit do

4: b̂k+1 =
(
I − prox β

γ ϕ

) (
Buk + bk

)
5: bk+1 = κbk + (1− κ) b̂k+1

6: Solve
(
ATA+ αDTD

)
uk+1 = AT f − γBT bk+1 for uk+1

7: if ‖uk+1−uk‖2
‖uk+1‖2 < tol then

8: Stop

9: end if

10: end for

The linear system in line 6 of Algorithm 2 is ill-conditioned, so we need to
consider how to find an approximate solution to the ill-conditioned linear system.
A typical method for finding an approximate solution to the linear system is

uk+1 = Mα(AT f − γBT bk+1),
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where Mα =
(
ATA+ αDTD

)†
r
. However, when A is large, the computation of(

ATA+ αDTD
)†
r

is very time-consuming. So we need to develop more efficient
method than Algorithm 2. To this end, we propose a fixed-poin-like method that
can be obtained by modifying Algorithm 2. Below we describe how to develop
the fixed-point-like method in detail. Since

b̂k+1 = (I − prox β
γ ϕ

)(Buk + bk )

= Buk + (bk − prox β
γ ϕ

(Buk + bk )),

we can split line 4 of Algorithm 2 into

b̂k+1 = Buk + bk+ 1
2
, (22)

where bk+ 1
2

= bk−prox β
γ ϕ

(Buk +bk ). Replacing uk of (22) with the new updated

value of uk+1, one can obtain

b̂k+1 = Buk+1 + bk+ 1
2
. (23)

Then, the solution step in line 6 of Algorithm 2 is changed to(
ATA+ αDTD

)
uk+1 = AT f − γBT b̂k+1, (24)

where b̂k+1 is computed using (23) instead of (22). Substituting (23) into (24),
one obtains (

ATA+ αDTD + γBTB
)
uk+1 = AT f − γBT bk+ 1

2
. (25)

After finding uk+1 from the linear system (25), we compute b̂k+1 using (23) and

bk+1 = κbk + (1− κ) b̂k+1. By applying the above ideas to Algorithm 2, we can
obtain a fixed-point-like method, called Algorithm 3, for solving the TVL2D2
problem (4).

Algorithm 3 Fixed-point-like method for the TVL2D2 problem (4)

1: Given : observed image f , positive parameters α, β, γ, and κ ∈ (0, 1)

2: Initialization : b0 = 0 and u0 = f

3: for k = 0 to maxit do

4: bk+ 1
2

= bk − prox β
γ ϕ

(Buk + bk )

5: Solve
(
ATA+ αDTD + γBTB

)
uk+1 = AT f − γBT bk+ 1

2
for uk+1

6: b̂k+1 = Buk+1 + bk+ 1
2

7: bk+1 = κbk + (1− κ) b̂k+1

8: if ‖uk+1−uk‖2
‖uk+1‖2 < tol then

9: Stop

10: end if

11: end for
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Notice that the linear system in line 5 of Algorithm 3 is equivalent to solving
the following least squares problem

min
u

∥∥∥∥∥∥∥
 A√

αD
√
γB

u−

 f

0

−√γbk+ 1
2


∥∥∥∥∥∥∥
2

2

. (26)

Hence, the linear system in line 5 of Algorithm 3 is solved by applying the CGLS
to the problem (26).

5. Split Bregman Method for the TVL2D2 problem

In this section, we just provide the alternating split Bregman method, called
Algorithm 4, for solving the TVL2 problem (4) in order to evaluate the perfor-
mance of Algorithm 3. For more details about the alternating split Bregman
method as well as its convergence analysis, we refer to [4, 7].

Algorithm 4 Split Bregman method for the TVL2D2 problem (4)

1: Given : observed image f , positive parameters α, β and γ

2: Initialization : c0 = 0, d0 = 0 and u0 = f

3: for k = 0 to maxit do

4: Solve
(
ATA+ αDTD + γBTB

)
uk+1 = AT f − γBT (dk − ck) for uk+1

5: for i = 1, 2, · · · , n2 do

6:

(
(dk+1)i

(dk+1)n2+i

)
= max

{∥∥∥∥∥
(

(Buk + ck)i
(Buk + ck)n2+i

)∥∥∥∥∥
2

− β
γ
, 0

}
·

 (Buk + ck)i
(Buk + ck)n2+i


∥∥∥∥∥∥
 (Buk + ck)i

(Buk + ck)n2+i

∥∥∥∥∥∥
2

7: end for

8: ck+1 = ck + Buk+1 − dk+1

9: if
‖uk+1−uk‖2
‖uk+1‖2

< tol then

10: Stop

11: end if

12: end for

As was done in line 5 of Algorithm 3, the linear system in line 4 of Algorithm
4 is also solved using the CGLS.

6. Numerical Experiments

In this section, we provide numerical experiments for several test problems to
evaluate the feasibility and efficiency of the fixed-point-like method, called Algo-
rithm 3, for the TVL2D2 problem. Performances of Algorithm 3 are evaluated
by comparing its numerical results with those of Algorithms 1 and 4.
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All numerical tests have been performed using Matlab R2016a on a per-
sonal computer equipped with Intel(R) Core(TM) i7-7700HQ CPU and 8.00GB
RAM. For numerical experiments, we have used 3 types of point spread functions
(PSFs) which are Gaussian blur, Average blur and Motion blur of size 9 × 9.
The PSF arrays P for Gaussian blur, Average blur and Motion blur of size
9× 9 are generated by the built-in Matlab functions fspecial(’gaussian’,[9,9],9),
fspecial(’average’,9) and

P = zeros(9); P (4 : 6, :) = fspecial(′motion′, 9, 1),

respectively. The blurred and noisy image f is generated by

f = A ·X(:) + E(:),

where A stands for the blurring matrix which can be generated by the PSF array
P according to the reflexive boundary condition, X represents the true image,
and E is the Gaussian white noise with mean 0 and standard deviation 3 which
can be generated using the Matlab function E = 3× randn(m,n), where (m,n)
denotes the size of the true image X.

All algorithms tested in the experiments are terminated when the following
stopping criterion was satisfied:

‖uk+1 − uk‖2
‖uk+1‖2

< tol,

where tol represents a prescribed tolerance value. We set tol = 5 × 10−4 for
Algorithms 1 and 3 and tol = 2 × 10−4 for Algorithm 4. For all test problems,
an initial image was set to the observed blurred and noisy image f , we set κ =
1×10−6 and maxit = 150. For the CGLS, the tolerance number is set to 5×10−2

and the maximum number of iterations is set to 60. In Table 1, “Alg.” represents
the algorithm number to be used, Cam denotes the Cameraman image, PSNR0

represents the PSNR values for the blurred and noisy image, “PSNR” represents
the PSNR values for the restored image, “Iter” denotes the number of iterations
required for Algorithms 1, 3 and 4, “α, β, γ” denote parameters which are chosen
by numerical tries, and “Time” represents the elapsed CPU time in seconds.

In order to illustrate the efficiency of the proposed fixed-point-like method, we
have used 5 test images such as the Cameraman, Lena, House, Boat and Caribou
with pixel size 256 × 256. To evaluate the quality of the restored images, we
have used the peak signal-to-noise ratio (PSNR) between the original image and
restored image which is defined by

PSNR = 10 log10

(
maxi,j |uij |2 ·m · n
‖U − Ũ‖2F

)
,

where ‖·‖F represents the Frobenius norm, Ũ denotes the restored image of size
m×n, and uij stands for the value of the original image U at a pixel point (i, j)
for 1 ≤ i ≤ m and 1 ≤ j ≤ n.
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Table 1. Numerical results for Algorithms 1, 3 and 4

Image PSF PSNR0 Alg. α β γ PSNR Iter Time

Cam

Gaussian 20.85

1 0.00160 0.120 0.00041 25.17 67 42.75

3 0.00010 0.127 0.0063 25.53 18 6.47

4 0.00008 0.130 0.0080 25.54 29 8.95

Average 20.76

1 0.00160 0.130 0.00041 25.24 58 37.46

3 0.00008 0.129 0.0071 25.61 19 6.47

4 0.00010 0.126 0.0084 25.61 28 8.67

Motion 21.85

1 0.00170 0.220 0.00049 28.05 51 11.26

3 0.00001 0.229 0.0066 28.56 16 2.68

4 0.00002 0.230 0.0160 28.53 25 2.77

Lena

Gaussian 22.55

1 0.00160 0.170 0.00040 26.17 69 45.16

3 0.00070 0.139 0.0030 26.35 19 9.45

4 0.00110 0.130 0.0080 26.31 19 6.50

Average 22.44

1 0.00160 0.170 0.00040 26.20 69 46.72

3 0.00050 0.159 0.0020 26.40 26 15.24

4 0.00070 0.149 0.0090 26.38 20 6.62

Motion 23.06

1 0.00170 0.240 0.00050 28.28 57 12.96

3 0.00041 0.239 0.0142 28.48 12 1.53

4 0.00020 0.260 0.0200 28.48 20 2.11

House

Gaussian 24.19

1 0.00200 0.200 0.00051 30.09 71 42.13

3 0.00060 0.190 0.0180 30.57 14 3.31

4 0.00080 0.190 0.0190 30.57 19 4.36

Average 24.05

1 0.00200 0.200 0.00051 30.02 58 34.94

3 0.00070 0.190 0.0173 30.55 13 3.10

4 0.00070 0.190 0.0130 30.56 21 5.64

Motion 27.01

1 0.00170 0.410 0.00051 32.87 68 14.02

3 0.00230 0.400 0.0260 33.69 10 1.05

4 0.00230 0.390 0.0320 33.67 15 1.39

All numerical results are provided in Table 1, and Figure 1 shows the restored
images by Algorithms 1 and 3. As can be seen in Table 1, Algorithm 3 restores
the true image better than Algorithm 1, and Algorithm 3 takes less CPU time
than Algorithm 1. This means that the fixed-point-like method (i.e., Algorithm
3) for the TVL2D2 problem proposed in this paper performs better in both
PSNR value and CPU time than the fixed-point method (i.e., Algorithm 1) for
TVL2I2 problem. Also notice that the fixed-point-like method (i.e., Algorithm
3) for the TVL2D2 problem restores the true image as well as the split Bregman
method (i.e., Algorithm 4) for the TVL2D2 problem, but Algorithm 3 takes less
CPU time than Algorithm 4.
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Image PSF PSNR0 Alg. α β γ PSNR Iter Time

Boat

Gaussian 21.28

1 0.00160 0.120 0.00041 25.13 60 40.62

3 0.00080 0.100 0.0069 25.34 11 3.90

4 0.00090 0.100 0.0080 25.33 16 5.28

Average 21.19

1 0.00160 0.120 0.00041 25.19 54 36.67

3 0.00080 0.110 0.0100 25.41 11 3.38

4 0.00090 0.100 0.0080 25.40 15 4.62

Motion 23.32

1 0.00180 0.240 0.00052 27.70 54 12.07

3 0.00100 0.200 0.0100 28.00 10 1.46

4 0.00100 0.200 0.0130 27.99 15 1.93

Caribou

Gaussian 23.69

1 0.00170 0.145 0.00009 27.10 100 61.59

3 0.00330 0.070 0.0063 27.40 7 2.57

4 0.00300 0.090 0.0050 27.40 13 4.84

Average 23.57

1 0.00200 0.145 0.00009 27.09 97 56.03

3 0.00420 0.070 0.0080 27.40 7 2.14

4 0.00200 0.100 0.0100 27.38 12 3.49

Motion 25.64

1 0.00190 0.290 0.00011 29.79 90 17.32

3 0.00480 0.115 0.0020 30.25 10 1.75

4 0.00700 0.104 0.0007 30.20 23 4.18

True image Blurred and noisy image Restored image by Alg. 1 Restored image by Alg. 3

True image Blurred and noisy image Restored image by Alg. 1 Restored image by Alg. 3

True image Blurred and noisy image Restored image by Alg. 1 Restored image by Alg. 3
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True image Blurred and noisy image Restored image by Alg. 1 Restored image by Alg. 3

True image Blurred and noisy image Restored image by Alg. 1 Restored image by Alg. 3

Fig. 1. Image restoration by Algorithms 1 and 3 (The first row con-
tains Cameraman images for Gaussian blur, the second row contains
Lena images for Average blur, the third row contains House images
for Motion blur, the fourth row contains Boat images for Motion blur
and the last row contains Caribou images for Motion blur).

7. Conclusion

In this paper, we have proposed the TVL2D2 regularization problem (4) for
image restoration, and we developed the fixed-point-like method (i.e., Algorithm
3) for solving the TVL2D2 problem. According to numerical experiments for
several test problems, the fixed-point-like method for the new proposed TVL2D2
problem performs better in both PSNR value and CPU time than the fixed-point
method (i.e., Algorithm 1) for the existing TVL2I2 problem (3). As compared
with the split Bregman method (i.e., Algorithm 4) for the TVL2D2 problem,
Algorithm 3 takes less CPU time than Algorithm 4, and Algorithm 3 restores
the true image as well as Algorithm 4. Hence, it can be concluded that the
fixed-point-like method (i.e., Algorithm 3) for the TVL2D2 problem is preferred
over the fixed-point method (i.e., Algorithm 1) for the TVL2I2 problem and the
split Bregman method (i.e., Algorithm 4) for the TVL2D2 problem.
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