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1. Introduction

The Banach contraction principle (BCP) is the tremendous, most versatile
and fundamental result in fixed point theory. Many authors gave different con-
tractions based on the BCP in the literature. Parvaneh et al. [15] initiated the
modified JS-contractions and weakly JS-contractions. In this paper, we consider
the related contractions in the setting of G-metric spaces (see, [1–8,14,16–21]).

Definition 1.1 ( [14]). Let Y be a non-empty set and G : Y × Y × Y → R+ be
a function so that:

(1) G(a, b, c) = 0 if a = b = c;
(2) G(a, a, b) > 0 for all a, b ∈ Y, with a 6= b;
(3) G(a, a, b) ≤ G(a, b, c), for all a, b, c ∈ Y with b 6= c;
(4) G(a, b, c) = G(b, c, a) = G(c, a, b) = · · · (symmetry in all three vari-

ables);
(5) G(a, b, c) ≤ G(a, x, x) + G(x, b, c), for all a, b, c, x ∈ Y (rectangular in-

equality).
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Then G is called a generalized metric (or a G-metric) on Y and the pair (Y,G)
is a G-metric space.

Example 1.2 ( [14]). Let Y be a non-empty subset of R, then the function
G : Y × Y × Y → [0,∞) given by G(a, b, c) = |a − b| + |b − c| + |c − a| for all
a, b, c ∈ Y , is a G-metric on Y .

Now, let {yn} be a sequence in G-metric space (Y,G).

Definition 1.3 ( [14]). An element y ∈ Y is said to be limit of a sequence {yn},
if limn,m→∞G(y, yn, ym) = 0. Here, {yn} is G-convergent to y. That is, for any
ε > 0, there is a positive integer N so that G(y, yn, ym) < ε, for all n,m ≥ N .

Definition 1.4 ( [14]). {yn} is said to be G-Cauchy, if for each ε > 0, there is
an integer N such that G(yn, ym, yl) < ε for all n,m, l ≥ N .

Definition 1.5. (Y,G) is said to be G-complete, if every G-Cauchy sequence in
(Y,G) is G-convergent in (Y,G).

Following [13], let ϑ : [0,∞) → [1,∞) be a function satisfying the following
conditions:

(ϑ1) ϑ is nondecreasing and ϑ(k) = 1 if and only if k = 0;
(ϑ2) for each {kh} ⊆ (0,∞), limh→∞ ϑ(kh) = 1 if and only if limh→∞ kh = 0;

(ϑ3) there exist n ∈ (0, 1) and Ω ∈ (0,∞] so that limk→0+
ϑ(k)−1
kn = Ω;

(ϑ4) ϑ is continuous.

For examples of such functions, one may consult the work in [9–12]. Denote by
∆ the class of functions ϑ satisfying the conditions (ϑ1)-(ϑ3).

Theorem 1.6 ( [13]). Let β be a self-mapping on a complete metric space (Y, d).
Suppose there exist ϑ ∈ ∆ and r ∈ (0, 1) so that for τ, σ ∈ Y , d(βτ, βσ) 6= 0
implies ϑ(d(βτ, βσ)) ≤ [ϑ(d(τ, σ))]r. Then ϑ has a unique fixed point.

Our goal is to make the conditions on the control function ϑ to be more
restricted. Let P be the family of functions ϑ : [0,∞) → [1,∞) satisfying the
conditions (ϑ1), (ϑ2) and (ϑ4).

Example 1.7. Some examples of functions in the set P are g(s) = cosh(s),

g(s) = ese
s

, g(s) = e
√
se
√

s

, g(s) = 2 cosh(s)
1+cosh(s) , g(s) = 2ese

s

1+eses
, g(s) = 2e

√
se
√

s

1+e
√

se
√

s ,

g(s) = 1 + ln(1 + s), g(s) = e
√
ses , g(s) = 2+2 ln(1+s)

2+ln(1+s) for all s > 0.

2. Main results

Definition 2.1. Let β be a self-mapping on a complete G-metric space (Y,G).
Then β is said to be a G-P-contraction, whenever there are ϑ ∈ P and ~1, ~2,
~3, ~4 ≥ 0 with ~1 + ~2 + ~3 + ~4 < 1 such that

ϑ(G(βι, βσ, βρ)) ≤ [ϑ(G(ι, σ, ρ))]~1 [ϑ(G(ι, βι, βι))]~2 [ϑ(G(σ, βσ, βσ))]~3

[ϑ(
G(ι, βσ, βσ) +G(σ, βι, βι)

2
)]~4 , (1)
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for all ι, σ, ρ ∈ Y .

Theorem 2.2. Every G-P-contraction mapping on a complete G-metric space
possesses a unique fixed point.

Proof. For ι0 ∈ Y , define {ιn} by ιn = βιn−1, n ≥ 1. If there is ιN = ιN+1 for
some N , nothing to prove. Suppose that ιN 6= ιN+1 for each n ≥ 0. We claim
that lim

n→∞
G(ιn, ιn+1, ιn+1) = 0. From (1), we have

ϑ(G(ιn, ιn+1, ιn+1)) = ϑ(G(βιn−1, βιn, βιn))

≤ [ϑ(G(ιn−1, ιn, ιn))]~1 [ϑ(G(ιn−1, βιn−1, βιn−1))]~2 [ϑ(G(ιn, βιn, βιn))]~3

[ϑ(
G(ιn−1, βιn, βιn) +G(ιn, βιn−1, βιn−1)

2
)]~4

≤ [ϑ(G(ιn−1, ιn, ιn))]~1 [ϑ(G(ιn−1, ιn, ιn))]~2 [ϑ(G(ιn, ιn+1, ιn+1))]~3

[ϑ(
G(ιn−1, ιn+1, ιn+1) +G(ιn, ιn, ιn)

2
)]~4

≤ [ϑ(G(ιn−1, ιn, ιn))]~1+~2 [ϑ(G(ιn, ιn+1, ιn+1))]~3 [ϑ(
G(ιn−1, ιn+1, ιn+1)

2
)]~4

≤ [ϑ(G(ιn−1, ιn, ιn))]~1+~2 [ϑ(G(ιn, ιn+1, ιn+1))]~3

[ϑ(max{G(ιn−1, ιn, ιn), G(ιn, ιn+1, ιn+1)})]~4 . (2)

If for some N , we have G(ιN−1, ιN , ιN ) < G(ιN , ιN+1, ιN+1), then in view of
(ϑ1), we get that

ϑ(G(ιN−1, ιN , ιN )) < ϑ(G(ιN , ιN+1, ιN+1)). (3)

Using (2), we have

ϑ(G(ιN , ιN+1, ιN+1)) ≤ [ϑ(G(ιN−1, ιN , ιN ))]~1+~2 [ϑ(G(ιN , ιN+1, ιN+1))]~3+~4 .
(4)

Therefore,

ϑ(G(ιN , ιN+1, ιN+1)) ≤ [ϑ(G(ιN−1, ιN , ιN ))]
~1+~2

1−~3−~4 ≤ [ϑ(G(ιN−1, ιN , ιN ))],

which is a contradiction with respect to (3). Consequently, for all n ≥ 1,

max{G(ιn−1, ιn, ιn), G(ιn, ιn+1, ιn+1)} = G(ιn−1, ιn, ιn),

which yields that

1 < ϑ(G(ιn, ιn+1, ιn+1)) ≤ [ϑ(G(ι0, ι1, ι1))][
~1+~2+~4

1−~3
]n .

Taking limit as n → ∞, we have limn→∞ ϑ(G(ιn, ιn+1, ιn+1)) = 1. From (ϑ2),
we get

lim
n→∞

G(ιn, ιn+1, ιn+1) = 0. (5)



510 Chary et al.

To prove that {ιn} is a G-Cauchy sequence, suppose the contrary, that is, there
is ε > 0 for which there are mi and ni so that ni > mi > i,

G(ιmi
, ιni

, ιni
) ≥ ε, (6)

and

G(ιmi
, ιni−1, ιni−1) < ε. (7)

From the rectangular inequality, we have

G(ιmi−1, ιni−1, ιni−1) ≤ G(ιmi−1, ιmi
, ιmi

) +G(ιmi
, ιni−1, ιni−1).

In view of (5) and (7), we get

lim sup
i→∞

G(ιmi−1, ιni−1, ιni−1) ≤ ε. (8)

Similarly,

lim sup
i→∞

G(ιmi−1, ιni
, ιni

) ≤ ε. (9)

On the other hand, since G(βιmi−1, βιni−1, βιni−1) > 0, so one writes

ϑ(G(ιmi
, ιni

, ιni
)) = ϑ(G(βιmi−1, βιni−1, βιni−1))

≤ [ϑ(G(ιmi−1, ιni−1, ιni−1))]~1 [ϑ(G(ιmi−1, βιmi−1, βιmi−1))]~2

[ϑ(G(ιni−1, βιni−1, βιni−1))]~3

[ϑ(
G(ιmi−1, βιni−1, βιni−1) +G(ιmi−1, βιmi−1, βιmi−1)

2
)]~4 .

Using now (ϑ4) and (5)-(8), we have

ϑ(ε) ≤ [ϑ(lim sup
i→∞

G(ιmi−1, ιni−1, ιni−1))]~1 [ϑ(lim sup
i→∞

G(ιmi−1, ιmi
, ιmi

))]~2

[ϑ(lim sup
i→∞

G(ιni−1, ιni
, ιni

))]~3

[ϑ(lim sup
i→∞

(
G(ιmi−1, ιni

, ιni
) +G(ιni−1, ιmi

, ιmi
)

2
))]~4

≤ (ϑ(ε))~1(ϑ(ε))~4 .

This implies that 1 < ϑ(ε) ≤ (ϑ(ε))~1+~4 , which is a contradiction. Thus, {ιn}
is a G-Cauchy sequence. The completeness of Y implies that there is ι ∈ Y so
that ιn → ι as n→∞. On the other hand,

ϑ(G(ιn, βι, βι)) = ϑ(G(βιn−1, βι, βι))

≤ [ϑ(G(ιn−1, ι, ι))]
~1 [ϑ(G(ιn−1, βιn−1, βιn−1))]~2 [ϑ(G(ι, βι, βι))]~3

[ϑ(
G(ιn−1, βι, βι) +G(ι, βιn−1, βιn−1)

2
)]~4

≤ [ϑ(G(ιn−1, ι, ι))]
~1 [ϑ(G(ιn−1, ιn, ιn))]~2 [ϑ(G(ι, βι, βι))]~3

[ϑ(
G(ιn−1, βι, βι) +G(ι, ιn, ιn)

2
)]~4 .
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Suppose that βι 6= ι, so G(ι, βι, βι) > 0. Taking n→∞ and using (ϑ1) and (5),
we have

ϑ(G(ι, βι, βι)) ≤ [ϑ(G(ι, ι, ι))]~1 [ϑ(G(ι, ι, ι))]~2 [ϑ(G(ι, βι, βι))]~3 [ϑ(G(ι, βι, βι))]~4

= [ϑ(G(ι, βι, βι))]~3+~4 < [ϑ(G(ι, βι, βι))],

which is a contradiction. Hence, ι is a fixed point of β. Let ι, σ be two different
fixed points of β. Then,

ϑ(G(ι, σ, σ)) = ϑ(G(βι, βσ, βσ))

≤ [ϑ(G(ι, σ, σ))]~1 [ϑ(G(ι, ι, ι))]~2 [ϑ(G(σ, σ, σ))]~3 [ϑ(
G(ι, σ, σ) +G(σ, ι, ι)

2
)]~4

= [ϑ(G(ι, σ, σ)]~1+~4 < ϑ(G(ι, σ, σ),

which is a contradiction. Therefore, the fixed point of β is unique. �

Remark 2.1. In Theorem 2.2, we can substitute the continuity of ϑ by the
continuity of β.

By setting ϑ(s) = e
√
s in Theorem 2.2, we have the following corollary.

Corollary 2.3. Let β be a self-mapping on a complete G-metric space (Y,G)
so that√

G(βι, βσ, βρ) ≤~1

√
G(ι, σ, ρ) + ~2

√
G(ι, βι, βι) + ~3

√
G(σ, βσ, βσ)

+ ~4

√
G(ι, βσ, βσ) +G(σ, βι, βι)

2
,

for all ι, σ, ρ ∈ Y , where ~1, ~2, ~3, ~4 ≥ 0 with ~1 + ~2 + ~3 + ~4 < 1. Then β
has a unique fixed point.

Setting ϑ(s) = e
n
√
s in Theorem 2.2, we have the following corollary.

Corollary 2.4. Let β : Y → Y be a mapping on a complete G-metric space
(Y,G) such that

n
√
G(βι, βσ, βρ) ≤~1

n
√
G(ι, σ, ρ) + ~2

n
√
G(ι, βι, βι) + ~3

n
√
G(σ, βσ, βσ)

+ ~4
n

√
G(ι, βσ, βσ) +G(σ, βι, βι)

2
,

for all ι, σ, ρ ∈ Y , where ~1, ~2, ~3, ~4 ≥ 0 with ~1 + ~2 + ~3 + ~4 < 1. Then β
has a unique fixed point.

Corollary 2.5. Let β : Y → Y be a mapping on a complete G-metric space
(Y,G) such that

[1 + ln(1 +G(βι, βσ, βρ))]

≤ [1 + ln(1 +G(ι, σ, ρ))]~1 [1 + ln(1 +G(ι, βι, βι))]~2

[1 + ln(1 +G(σ, βσ, βσ))]~3 [1 + ln(1 +
G(ι, βσ, βσ) +G(σ, βι, βι)

2
)]~4 ,
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for all ι, σ, ρ ∈ Y , where ~1, ~2, ~3, ~4 ≥ 0 so that ~1 + ~2 + ~3 + ~4 < 1. Then β
has a unique fixed point.

Example 2.6. Let Y = [0,∞) and G(ι, σ, ρ) = max{|ι − σ|, |σ − ρ|, |ρ − ι|}.
Define β : Y → Y by β(t) = t

6 where t ∈ Y and ϑ(s) = e
√
s and ~i = 1

5 ;
i = 1, 2, 3, 4 and t = 0 is a unique fixed point of β.

3. Weakly JS-G-contractive conditions

Let Φ be the set of functions θ : [1,∞)→ [0,∞) so that:

(θ1) θ is continuous;
(θ2) θ(1) = 0;
(θ3) For each {an} ⊆ (1,∞), lim

n→∞
θ(an) = 0 iff lim

n→∞
an = 1.

Remark 3.1. Note that θ(s) = s − n
√
s (n ≥ 1) belongs to Φ. Other examples

are θ(s) = es−1 − 1 and θ(s) = ln(s).

Definition 3.1. Let (Y,G) be a G-metric space and β be a self-mapping on Y.
We say that β is a weakly JS-G-contraction if for all ι, σ, ρ ∈ Y , we have

ϑ(G(βι, βσ, βρ)) ≤ ϑ(G(ι, σ, ρ))− θ(ϑ(G(ι, σ, ρ))), (10)

where θ ∈ Φ and ϑ ∈ P.

Theorem 3.2. Let (Y,G) be a complete G-metric space and β be a self-mapping
on Y such that
(1) β is a weakly JS-G-contraction;
(2) β is continuous.
Then β admits a unique fixed point.

Proof. For ι0 ∈ Y , define {ιn} by ιn = βnι0 = βιn−1. Without loss of generality,
assume that ιn 6= ιn+1 for each n ≥ 0. Since β is a weakly JS-G-contraction, we
derive

ϑ(G(ιn, ιn+1, ιn+1)) =ϑ(G(βιn−1, βιn, βιn))

≤ ϑ(G(ιn−1, ιn, ιn))− θ(ϑ(G(ιn−1, ιn, ιn))). (11)

Thus, {ϑ(G(ιn, ιn+1, ιn+1))} is decreasing, and so there is r ≥ 1 such that

lim
n→∞

ϑ(G(ιn, ιn+1, ιn+1)) = r.

Now, we will prove that r = 1. Taking n→∞ in (11), we have

r ≤ r − θ(r), (12)

and hence

lim
n→∞

θ(ϑ(G(ιn−1, ιn, ιn))) = 0. (13)

That is,

lim
n→∞

ϑ(G(ιn−1, ιn, ιn)) = 1, (14)
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and so

lim
n→∞

G(ιn−1, ιn, ιn) = 0. (15)

We now show that {ιn} is a G-Cauchy sequence. We argue by contradiction.
Suppose there is ε > 0 for which there are {ιmi

} and {ιni
} of {ιn} so that

ni > mi > i and

G(ιmi
, ιni

, ιni
) ≥ ε and G(ιmi

, ιni−1, ιni−1) < ε. (16)

Using (16) and the rectangular inequality, we get

ε ≤ G(ιmi , ιni , ιni)

≤ G(ιmi
, ιmi+1, ιmi+1) +G(ιmi+1, ιni

, ιni
)

≤ G(ιmi
, ιmi+1, ιmi+1) +G(ιmi+1, ιni+1, ιni+1) +G(ιni+1, ιni

, ιni
).

Taking i→∞, and using (15), we get

ε ≤ lim sup
i→∞

G(ιmi+1, ιni+1, ιni+1). (17)

Also,

G(ιmi
, ιni

, ιni
) ≤ G(ιmi

, ιni−1, ιni−1) +G(ιni−1, ιni
, ιni

).

Then from (15) and (16), we have

lim sup
i→∞

G(ιmi
, ιni

, ιni
) ≤ ε. (18)

By (10), we deduce

ϑ(G(ιmi+1, ιni+1, ιni+1)) =ϑ(G(βιmi
, βιni

, βιni
))

≤ ϑ(G(ιmi
, ιni

, ιni
))− θ(ϑ(G(ιmi

, ιni
, ιni

))).

Now, taking i→∞, using (ϑ1), (ϑ4), (17) and (18), we have

ϑ(ε) ≤ ϑ(lim sup
i→∞

G(ιmi+1, ιni+1, ιni+1))

≤ ϑ(lim sup
i→∞

G(ιmi
, ιni

, ιni
))− lim inf

i→∞
θ(ϑ(G(ιmi

, ιni
, ιni

)))

≤ ϑ(ε)− lim inf
i→∞

θ(ϑ(G(ιmi , ιni , ιni))),

which implies that

lim inf
i→∞

θ(ϑ(G(ιmi
, ιni

, ιni
))) = 0.

Thus,

lim inf
i→∞

G(ιmi
, ιni

, ιni
) = 0.

which contradicts with (16). Hence, {ιn} is a G-Cauchy sequence in the complete
G-metric space (Y,G). Therefore, there exists ι ∈ Y such that

lim
n→∞

G(ιn, ι, ι) = 0.
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Now, since β is continuous, ιn+1 = βιn → βι as n→∞. From the uniqueness of
limit, we obtain ι = βι. Thus, β admits a fixed point. Let ι, σ be two different
fixed points of β. Then,

ϑ(G(ι, σ, σ)) = ϑ(G(βι, βσ, βσ))

≤ ϑ(G(ι, σ, σ))− θ(ϑ(G(ι, σ, σ))),

which implies that G(ι, σ, σ) = 0, and hence ι = σ. �

Without the continuity assumption of β, we have the following result.

Theorem 3.3. Let (Y,G) be a complete G-metric space and β be a self-mapping
on Y . Suppose that

ϑ(G(βι, βσ, βρ)) ≤ ϑ(G(ι, σ, ρ))− θ(ϑ(G(ι, σ, ρ))), (19)

for all ι, σ, ρ ∈ Y , where ϑ ∈ P and θ ∈ Φ. Then β admits a unique fixed point.

Proof. For ι0 ∈ Y, let {ιn} be defined by ιn+1 = βιn for n ≥ 0. Arguing similar
lines in Theorem 3.2, there exists ι ∈ Y such that lim

n→∞
G(ιn, ι, ι) = 0. On the

other hand,

G(ι, βι, βι) ≤ G(ι, βιn, βιn) +G(βιn, βι, βι). (20)

From (19), we have

1 ≤ ϑ(G(βιn, βι, βι)) ≤ ϑ(G(ιn, ι, ι))− θ(ϑ(G(ιn, ι, ι))). (21)

Hence, we get that

lim
n→∞

ϑ(G(βιn, βι, βι)) = 1.

Thus, we have lim
n→∞

G(βιn, βι, βι) = 0 which by (20), implies that βι = ι. �

Example 3.4. Let Y = [2,∞) and consider G(p, q, r) = |p− q|+ |q− r|+ |r−p|
for all p, q, r ∈ Y. Define β : Y → Y, θ : [1,∞) → [0,∞) and ϑ : [0,∞) → [1,∞)
by β(p) = ln(10 + p), θ(p) = ln(p) and ϑ(p) = ep. Note that for all z ≥ 0,
e

z
10 ≤ ez − z. Now, for all p, q, r ∈ Y, we have

ϑ(G(βp, βq, βr)) = eG(βp,βq,βr)

= e(|βp−βq|+|βq−βr|+|βr−βp|)

= e(|ln(10+p)−ln(10+q)|+|ln(10+q)−ln(10+r)|+|ln(10+r)−ln(10+p)|)

= e|ln(10+p)−ln(10+q)|e|ln(10+q)−ln(10+r)|e|ln(10+r)−ln(10+p)|

≤ e
|p−q|

10 e
|q−r|

10 e
|r−p|

10

= e
|p−q|+|q−r|+|r−p|

10

≤ e|p−q|+|q−r|+|r−p| − (|p− q|+ |q − r|+ |r − p|)

≤ eG(p,q,r) −G(p, q, r)

≤ ϑ(G(p, q, r))− φ(ϑ(G(p, q, r))).
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Thus, β is a weakly JS-G-contraction. All the hypotheses of Theorem 3.2 are
satisfied, and so β possesses a unique fixed point, which is, ρ = 252

100 = 2.52.

4. Application to integral equations

Consider the following nonlinear integral equation

ι(t) = φ(t) +

∫ b

a

η(t, s, ι(s))ds, (22)

where a, b ∈ R, ι ∈ C[a, b] (the set of continuous functions from [a, b] to R),
φ : [a, b]→ R and η : [a, b]× [a, b]× R→ R are given functions.

Theorem 4.1. Suppose that

(1) η : [a, b]× [a, b]× R→ R is continuous and there is ϑ ∈ P such that
ϑ( sup
t∈[a,b]

g(t)) ≤ sup
t∈[a,b]

ϑ(g(t)) for arbitrary function g with

ϑ
(∫ b

a

[
|η(t, s, ι(s))− η(t, s, σ(s))|+ |η(t, s, σ(s))− η(t, s, ρ(s))|

+ |η(t, s, ρ(s))− η(t, s, ι(s)|)
]
ds
)

≤
∫ b

a

ϑ
(
|η(t, s, ι(s))− η(t, s, σ(s))|+ |η(t, s, σ(s))− η(t, s, ρ(s))|

+ |η(t, s, ρ(s))− η(t, s, ι(s))|
)
ds;

(2) there exist ~i ∈ (0, 1) (i ∈ {1, 2, 3, 4}) such that

ϑ
(
|η(t, s, ι(s))− η(t, s, σ(s))|+ |η(t, s, σ(s))− η(t, s, ρ(s))|

+ |η(t, s, ρ(s))− η(t, s, ι(s))|
)

≤ 1

b− a
[ϑ(|ι(t)− σ(t)|+ |σ(t)− ρ(t)|+ |ρ(t)− ι(t))|]~1

[ϑ(|ι(t)−
∫ b

a

η(t, s, ι(s))ds|)]~2 [ϑ(|σ(t)−
∫ b

a

η(t, s, σ(s))ds|)]~3

[ϑ(|σ(t)−
∫ b

a

η(t, s, ι(s))ds|)]~4 ,

for all ι, σ, ρ ∈ C[a, b], and t, s ∈ [a, b]. Then (22) has a unique solution.

Proof. Let Y = C[a, b]. Define G-metric G on Y by

G(ι, σ, ρ) = sup
t∈[a,b]

{|ι(t)− σ(t)|+ |σ(t)− ρ(t)|+ |ρ(t)− ι(t)|}.

Note that (Y,G) is a complete G-metric space. Consider β : Y → Y by

βι(t) = φ(t) +

∫ b

a

η(t, s, ι(s))ds.
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For ι, σ, ρ ∈ Y and t ∈ [a, b], we have

ϑ(|βι(t)− βσ(t)|+ |βσ(t)− βρ(t)|+ |βρ(t)− βι(t)|)

= ϑ
(
|
∫ b

a

η(t, s, ι(s))ds−
∫ b

a

η(t, s, σ(s))ds|

+ |
∫ b

a

η(t, s, σ(s))ds−
∫ b

a

η(t, s, ρ(s))ds|

+ |
∫ b

a

η(t, s, ρ(s))ds−
∫ b

a

η(t, s, ι(s))ds|
)

≤
∫ b

a

ϑ
(
|η(t, s, ι(s))− η(t, s, σ(s))|+ |η(t, s, σ(s))− η(t, s, ρ(s))|

+ |η(t, s, ρ(s))− η(t, s, ι(s))|
)
ds

≤ 1

b− a

∫ b

a

[ϑ(|ι(t)− σ(t)|+ |σ(t)− ρ(t)|+ |ρ(t)− ι(t)|)]~1

[ϑ(|ι(t)−
∫ b

a

η(t, s, ι(s))ds|)]~2 [ϑ(|σ(t)−
∫ b

a

η(t, s, σ(s))ds|)]~3

[ϑ(|σ(t)−
∫ b

a

η(t, s, ι(s))ds|)]~4ds

≤ 1

b− a

∫ b

a

[ϑ(G(ι, σ, ρ))]~1 [ϑ(G(ι, βι, βι))]~2 [ϑ(G(σ, βσ, βσ))]~3

[ϑ(G(σ, βι, βι))]~4ds

= [ϑ(G(ι, σ, ρ))]~1 [ϑ(G(ι, βι, βι))]~2 [ϑ(G(σ, βσ, βσ))]~3 [ϑ(G(σ, βι, βι))]~4 .

Thus β is a G-P-contraction. All the properties of Theorem 2.2 are satisfied
and so β has a unique fixed point, that is, (22) possesses a unique solution. �
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8. L. Gajić, Z. Kadelburg and S. Radenović, Gp-metric spaces symmetric and asymmetric,

Novi Pazar Ser. A: Appl. Math. Inform. Mech. 9 (2017), 37-46.

9. N. Hussain, V. Parvaneh, B. Samet and C. Vetro, Some fixed point theorems for generalized
contractive mappings in complete metric spaces, Fixed Point Theory Appl. 185 (2015).
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21. S. Radenović, Remarks on some recent coupled coincidence point results in symmetric

G-metric spaces, Journal of Operators 2013 (2013), Article ID 290525.

V. Srinivas Chary received his M.Sc. from Sri Krishnadevaraya University, Anantha-

pur in 2004 and his M.Phil. from Sri Venkateshwara university at Tirupathi in 2011. He

is a research scholar in the department of mathematics at ICFAI Foundation of Higher
Education.

Research Scholar, Faculty of Science and Technology, Icfai Foundation for Higher Education,

Hyderabad-501203, India.

e-mail: srinivaschary.varanasi@gmail.com
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