J. Appl. Math. & Informatics Vol. **38**(2020), No. 5 - 6, pp. 463 - 468 https://doi.org/10.14317/jami.2020.463

FUZZY MEAN OPEN AND FUZZY MEAN CLOSED SETS

A. SWAMINATHAN

ABSTRACT. The purpose of this article is to study the concepts of fuzzy mean open and fuzzy mean closed sets in fuzzy topological spaces. Further, in what way they are similar to those of other. Also we discuss some properties of fuzzy mean open and fuzzy mean closed with fuzzy paraopen and fuzzy paraclosed sets in fuzzy topology.

AMS Mathematics Subject Classification : 54A40, 03E72. *Key words and phrases* : Fuzzy mean open, Fuzzy mean closed, Fuzzy paraopen, Fuzzy paraclosed.

1. Introduction

After the introduction of fuzzy sets by the L.A. Zadeh[9], the concept of fuzzy topology introduced by C.L.Chang[2] in 1968. The notions of minimal open[6] and maximal open[5] sets explored by F. Nakaoka and N. Oda. Further the idea of paraopen sets was studied by B. M. Ittanagi and S. S. Benchalli[4]. Consequent of this, the concepts of mean open set and mean closed set investigated by Ajoy Mukherjee and Kallol Bhandhu Bagchi in [1]. The idea of fuzzy minimal and fuzzy maximal open sets studied by B. M. Ittanagi and R. S. Wali in [3].

In this paper (X, τ) or X stands for fuzzy topological space. The symbols λ , μ , γ , η ,... are used to denote fuzzy sets and a fuzzy point with support $x (\in X)$ and value $\alpha (0 < \alpha \leq 1)$ will be denoted by x_{α} . Then 0_X and 1_X will denote the fuzzy sets having values 0 and 1 respectively at each point of X. $x_{\alpha} \in \lambda$ will mean $\alpha \leq \lambda(x)$, where as $\lambda(x) \leq \mu(x)$, for each $x \in X$.

Definition 1.1. A proper nonempty fuzzy open set α of X is said to be a fuzzy minimal open[3] set if α and 0_X are only fuzzy open sets contained in α .

Definition 1.2. A proper nonempty fuzzy open set β of X is said to be a fuzzy maximal open[3] set if 1_X and β are only fuzzy open sets containing β .

Received December 18, 2019. Revised June 4, 2020. Accepted June 7, 2020. \bigodot 2020 KSCAM.

Definition 1.3. A fuzzy open set α of a topological space X is said to be a fuzzy paraopen[7] set if it is neither fuzzy minimal open nor fuzzy maximal open set. The family of all fuzzy paraopen sets in a fuzzy topological space X is denoted by FPaO(X).

Definition 1.4. A fuzzy closed set β of a fuzzy topological space X is said to be paraclosed[7] if $1_X - \beta$ is fuzzy paraopen.

Theorem 1.5. Let X be a fuzzy topological space and λ be a nonempty fuzzy paraopen subset of X. Then there exists a fuzzy minimal open set μ such that $\mu < \lambda$.

Theorem 1.6 ([7]). Let X be a fuzzy topological space and λ be a nonempty fuzzy paraopen subset of X. Then there exists a fuzzy maximal open set σ such that $\lambda < \sigma$.

Theorem 1.7 ([7]). If ϑ is a proper fuzzy paraopen set, then there exist two proper fuzzy open sets $\eta_1, \eta_2 (\neq \vartheta)$ such that $\eta_1 < \vartheta < \eta_2$.

Proof. Proof follows from definition of paraopen set.

Theorem 1.8. Let X be a fuzzy topological space and α be a nonempty fuzzy paraclosed subset of X. Then there exists a fuzzy minimal closed set γ such that $\gamma < \alpha$.

Theorem 1.9 ([7]). Let X be a fuzzy topological space and α be a nonempty fuzzy paraclosed subset of X. Then there exists a fuzzy maximal closed set ν such that $\alpha < \nu$.

Theorem 1.10 ([7]). If α is a proper fuzzy paraclosed set, then there exist two proper fuzzy closed sets $\gamma, \nu \neq \alpha$ such that $\gamma < \alpha < \nu$.

2. Fuzzy Mean Open and Fuzzy Mean Closed Sets

In this section we introduce fuzzy mean open and fuzzy mean closed sets.

Definition 2.1. A fuzzy open set μ of a fuzzy topological space X is said to be a fuzzy mean open set if there exist two distinct proper fuzzy open sets $\lambda_1, \lambda_1 (\neq \mu)$ such that $\lambda_1 < \mu < \lambda_2$.

Remark 2.1. It is observed from the definition that the union and intersection of fuzzy mean open sets need not be fuzzy mean open sets which is showed in the following example.

Example 2.2. Let $X = \{a, b, c\}$. Then fuzzy sets $\lambda_1 = \frac{0.1}{a} + \frac{0.2}{b} + \frac{0.0}{c}$; $\lambda_2 = \frac{0.0}{a} + \frac{0.2}{b} + \frac{0.1}{c}$; $\lambda_3 = \frac{0.0}{a} + \frac{0.2}{b} + \frac{0.0}{c}$ and $\lambda_4 = \frac{0.1}{a} + \frac{0.2}{b} + \frac{0.1}{c}$ are defined as follows: Consider the fuzzy topology $\tau = \{0_X, \lambda_1, \lambda_2, \lambda_3, \lambda_4, 1_X\}$. Hence λ_1 and λ_2 are fuzzy mean open sets but their union $\lambda_1 \vee \lambda_2 = \lambda_4$ and intersection $\lambda_1 \wedge \lambda_2 = \lambda_3$ are not fuzzy mean open sets.

464

Definition 2.3. A fuzzy closed set η of a fuzzy topological space X is said to be a fuzzy mean closed set if there exist two distinct proper fuzzy closed sets $\vartheta_1, \vartheta_1 \neq \eta$ such that $\vartheta_1 < \eta < \vartheta_2$.

Theorem 2.4. A fuzzy open set of a fuzzy topological space is a fuzzy mean open set iff its complement is a fuzzy mean closed set.

Proof. Let μ be a fuzzy mean open set in X. Then we have fuzzy open sets $\lambda_1 \neq 0_X, \mu$ and $\lambda_2 \neq \mu, 1_X$ such that $\lambda_1 < \mu < \lambda_2$ and so $1_X - \lambda_2 < 1_X - \mu < 1_X - \lambda_1$. Since $1_X - \lambda_2 \neq 0_X, 1_X - \mu$ and $1_X - \lambda_1 \neq 1_X - \mu, 1_X$; hence $1_X - \mu$ is a fuzzy mean closed set.

Conversely, let μ be a fuzzy open set such that $1_X - \mu$ is a fuzzy mean closed set. Hence there exist fuzzy closed sets $\vartheta_1 \neq 0_X$, $1_X - \mu$ and $\vartheta_2 \neq 1_X - \mu$, 1_X such that $\vartheta_1 < 1_X - \mu < \vartheta_2$. It means that $1_X - \vartheta_2 < \mu < 1_X - \vartheta_1$. Since $1_X - \vartheta_2 \neq 0_X$, μ and $1_X - \vartheta_1 \neq \mu$, 1_X and hence μ is a fuzzy mean open set. \Box

Theorem 2.5. A proper fuzzy paraopen set is a fuzzy mean open set and vicee-versa.

Proof. If α is a proper fuzzy paraopen set, then it is easy to follow by Theorem 1.7 that α is a fuzzy mean open set.

Conversely, let μ be a fuzzy mean open set in 1_X . Then there exist proper fuzzy open sets $\beta_1, \beta_2 \neq \mu$ such that $\beta_1 < \mu < \beta_2$. Since $\beta_1 \neq 0_X, \mu$ and $\beta_2 \neq 1_X, \mu, \mu$ is neither a fuzzy minimal nor a fuzzy maximal open set. As $\mu \neq 0_X, 1_X, \mu$ is a proper fuzzy paraopen set.

Theorem 2.6. A proper fuzzy paraclosed set is a fuzzy mean closed set and vice-e-versa.

Proof. If δ is a proper fuzzy paraclosed set, then it is easy to follow by Theorem 1.10 that δ is a fuzzy mean open set.

Conversely, let δ be a fuzzy mean open set in X. Then there exist proper fuzzy closed sets $\eta_1, \eta_2 \neq \delta$ such that $\eta_1 < \delta < \eta_2$. Since $\eta_1 \neq 0_X, \delta$ and $\eta_2 \neq 1_X, \delta, \delta$ is neither a fuzzy minimal nor a fuzzy maximal closed set. As $\delta \neq 0_X, 1_X, \delta$ is a proper fuzzy paraclosed set.

Theorem 2.7. [3] Let X be a fuzzy topological space.

(i) If β is a fuzzy minimal open and ϑ is a fuzzy open sets in X, then $\beta \wedge \vartheta = 0_X$ or $\beta < \vartheta$.

(ii) If β and γ are fuzzy minimal open sets, then $\beta \wedge \vartheta = 0_X$ or $\beta = \vartheta$.

Theorem 2.8. [3] Let X be a fuzzy topological space.

(i) If β is a fuzzy maximal open and ϑ is a fuzzy open sets in X, then $\beta \lor \vartheta = 1_X$ or $\vartheta < \beta$.

(ii) If β and γ are fuzzy maximal open set, then $\beta \lor \gamma = 1_X$ or $\beta = \gamma$.

A. Swaminathan

Theorem 2.9. [8] If ϑ_1 is a fuzzy maximal open set and ϑ_2 is a fuzzy minimal open set of a fuzzy topological space X, then either $\vartheta_2 < \vartheta_1$ or the space is fuzzy disconnected.

Theorem 2.10. Let a fuzzy connected topological space X contain a fuzzy maximal open set β_2 , a fuzzy minimal open set $\beta_1 \neq \beta_2$ and a proper fuzzy open set $\vartheta \neq \beta_1, \beta_2$. Then only one of the following is true on X: (i) ϑ is a fuzzy mean open set such that $\beta_1 < \vartheta < \beta_2$.

 $\begin{array}{l} (ii)\beta_1 < 1_X - \vartheta < \beta_2. \\ (iii) \beta_1 < \vartheta, \beta_1 \lor \vartheta = 1_X \ and \ \beta_2 \land \vartheta \neq 0_X. \end{array}$

 $(iv)\vartheta < \beta_2, \beta_1 \wedge \beta_2 = 0_X \text{ and } \beta_1 \vee \beta_2 \neq 1_X.$

Proof. By theorem 2.9, we have $\beta_1 < \beta_2$. Since β_1 is a fuzzy minimal open set and β_2 is a fuzzy maximal open set, we have $\beta_1 < \vartheta$ or $\beta_1 \land \vartheta = 0_X$ and $\vartheta < \beta_2$ or $\beta_2 \lor \vartheta = 1_X$. The feasible combinations are (i) $\beta_1 < \vartheta < \beta_2$, (ii) $\beta_1 \land \vartheta = 0_X$ and $\beta_2 \lor \vartheta = 1_X$, (iii) $\beta_1 < \vartheta$ and $\beta_2 \lor \vartheta = 1_X$, (iv) $\beta_1 \land \vartheta = 0_X$ and $\vartheta < \beta_2$. $\beta_1 \land \vartheta = 0_X$ and $\beta_2 \lor \vartheta = 1_X$ imply that $\beta_1 < 1_X - \vartheta < \beta_2$. If $\beta_1 < \vartheta$ and $\beta_2 \lor \vartheta = 1_X$, then $0_X \neq \beta_1 < \beta_2 \land \vartheta$ since $\beta_1 < \beta_2$. If $\beta_1 \land \vartheta = 0_X$ and $\vartheta < \beta_2$, then $\beta_1 \lor \vartheta < \beta_2 \neq 1_X$ since $\beta_1 < \beta_2$.

If both (i) and (ii) are true, then we see that $\beta_1 < \vartheta \lor (1_X - \vartheta) < \beta_2$ and $\beta_1 < \vartheta \land (1_X - \vartheta) < \beta_2$. $\beta_1 < \vartheta \lor (1_X - \vartheta) < \beta_2$ gives $\beta_1 < 1_X < \beta_2$ and then we get $\beta_2 = 1_X$, an absurd result. Also $\beta_1 < \vartheta \land (1_X - \vartheta) < \beta_2$ gives $\beta_1 < 0_X < \beta_2$ and then we get $\beta_1 = 0_X$, again an absurd result.

If both (i) and (iii) are true, then $\vartheta < \beta_2$ and $\beta_2 \lor \vartheta = 1_X$ give $\beta_2 = 1_X$, an absurd result.

If both (i) and (iv) are true, then $\beta_1 < \vartheta$ and $\beta_1 \wedge \vartheta = 0_X$ give $\beta_1 = 0_X$, an absurd result.

If both (ii) and (iii) are true, then $\beta_1 < 1_X - \vartheta$ and $\beta_1 < \vartheta$ give $\beta_1 < (1_X - \vartheta) \land \vartheta = 0_X$ and thus $\beta_1 = 0_X$, an absurd result.

If both (ii) and (iv) are true, then we have $1_X - \vartheta < \beta_2$ and $\vartheta < \beta_2$ give $(1_X - \vartheta) \lor \vartheta = 1_X < \beta_2$ and thus $\beta_2 = 1_X$, an absurd result.

If both (iii) and (iv) are true, then we get $\beta_1 < \vartheta < \beta_2, \beta_2 \lor \vartheta = 1_X$ and $\beta_1 \land \vartheta = 0_X$. $\vartheta < \beta_2$ and $\beta_2 \lor \vartheta = 1_X$ give $\beta_2 = 1_X$, an absurd result. $\beta_1 < \vartheta$ and $\beta_1 \land \vartheta = 0_X$ give $\beta_1 = 0_X$, again an absurd result.

Theorem 2.11. Let a fuzzy connected topological space X contain a fuzzy maximal closed set η_2 , a fuzzy minimal closed set η_1 with $\eta_1 \neq \eta_2$ and a proper fuzzy closed set $\sigma \neq \eta_1, \eta_2$. Then only one of the following is true on X:

(i) σ is a fuzzy mean closed set such that $\eta_1 < \sigma < \eta_2$.

 $(ii)\eta_1 < 1_X - \sigma < \eta_2.$

(iii) $\sigma < \eta_2, \eta_1 \land \sigma = 0_X$ and $\eta_1 \lor \sigma \neq 1_X$. (iv) $\eta_1 < \sigma, \eta_2 \lor \sigma = 1_X$ and $\eta_2 \land \sigma \neq 0_X$.

Proof. We see that the fuzzy connected topological space X contains a fuzzy maximal open set $1_X - \eta_1$, a fuzzy minimal open set $1_X - \eta_2$ and a proper fuzzy

466

open set $1_X - \sigma$ with $1_X - \eta_1 \neq 1_X - \eta_2$ and $1_X - \sigma \neq 1_X - \eta_1, 1_X - \eta_2$. By Theorem 2.10, only one of the following is true:

(i) $1_X - \sigma$ is a fuzzy mean open set such that $1_X - \eta_2 < 1_X - \sigma < 1_X - \eta_1$ which in turn implies that $\eta_1 < \sigma < \eta_2$ Theorem 2.4, we see that σ is a fuzzy mean closed set.

(ii) $1_X - \eta_2 < 1_X - (1_X - \sigma) < 1_X - \eta_1$ i.e., $\eta_1 < 1_X - \sigma < \eta_2$. (iii) $1_X - \eta_2 < 1_X - \sigma, (1_X - \eta_1) \lor (1_X - \sigma) = 1_X$ and $(1_X - \eta_1) \land (1_X - \sigma) \neq 0_X$. $0_X.i.e., \sigma < \eta_2, \eta_1 \land \sigma = 0_X$ and $\eta_1 \lor \sigma \neq 1_X$. (iv) $1_X - \sigma < 1_X - \eta_1, (1_X - \eta_2) \land (1_X - \sigma) = 0_X$ and $(1_X - \eta_2) \lor (1_X - \sigma) \neq 1_X$. $1_X.i.e., \eta_1 < \sigma, \eta_2 \lor \sigma = 1_X$ and $\eta_2 \land \sigma \neq 0_X$.

Theorem 2.12. If there are two distinct fuzzy maximal open sets and a fuzzy mean open set in a fuzzy topological space, then the intersection of the two fuzzy maximal open sets is nonempty.

Proof. Let γ_1, γ_2 be two distinct fuzzy maximal open sets and ω be a fuzzy mean open set in a fuzzy topological space X. By Theorem 2.8, $\gamma_1 \vee \gamma_2 = 1_X$. ω being a fuzzy mean open set, it is neither fuzzy maximal open nor fuzzy minimal open which means that, $\omega \neq \gamma_1, \gamma_2$. Also $\omega \neq 1_X$. By Theorem 2.8, we get $\omega \lneq \gamma_1$ or $\omega \vee \gamma_1 = 1_X$ and $\omega \nleq \gamma_2$ or $\omega \vee \gamma_2 = 1_X$. The feasible possibilities are (I) $\omega \lneq \gamma_1$ and $\omega \nleq \gamma_2$, (II) $\omega \gneqq \gamma_1$ and $\omega \vee \gamma_2 = 1_X$, (III) $\omega \vee \gamma_1 = 1_X$ and $\omega \gneqq \gamma_2$ and (IV) $\omega \vee \gamma_1 = 1_X$ and $\omega \vee \gamma_2 = 1_X$.

Case I: Obviously, $\gamma_1 \wedge \gamma_2 \neq 0_X$ if $\omega \nleq \gamma_1$ and $\omega \gneqq \gamma_2$.

Case II:If $\omega \wedge \gamma_2 \neq 0_X$, then obviously $\gamma_1 \wedge \gamma_2 \neq 0_X$. Now suppose $\omega \wedge \gamma_2 \neq 0_X$. As $\omega \leq \gamma_1$, then there exists $x_\alpha \in \gamma_1$ such that $x_\alpha \notin \gamma_2$. Since $\omega \vee \gamma_2 = 1_X$, $x \in \gamma_2$. So $\gamma_1 \wedge \gamma_2 \neq 0_X$.

Case III: Similar to Case II.

Case IV: $\omega \lor \gamma_1 = 1_X$ and $\omega \lor \gamma_2 = 1_X$ imply that $\omega \lor (\gamma_1 \land \gamma_2) = 1_X$ which in turn imply that $\omega = 1_X$ if $\gamma_1 \land \gamma_2 = 0_X$. As $\omega \neq 1_X$, we have $\gamma_1 \land \gamma_2 \neq 0_X$. \Box

Theorem 2.13. If there are two distinct fuzzy minimal open sets and a fuzzy mean open set in a fuzzy topological space, then the union of the two fuzzy minimal open sets is not equal to 1_X .

Proof. Let γ_1 , γ_2 be two distinct fuzzy minimal open sets and ω be a fuzzy mean open set in a fuzzy topological space X. By Theorem 2.7, $\gamma_1 \vee \gamma_2 = 0_X$. ω being a fuzzy mean open set, it is neither fuzzy maximal open nor fuzzy minimal open which means that, $\omega \neq \gamma_1, \gamma_2$. Also $\omega \neq 0_X, 1_X$. By Theorem 2.7, we get $\gamma_1 \nleq \omega$ or $\omega \wedge \gamma_1 = 0_X$ and $\gamma_2 \gneqq \omega$ or $\omega \wedge \gamma_2 = 0_X$. The feasible possibilities are (I) $\gamma_1 \gneqq \omega$ and $\gamma_2 \gneqq \omega$, (II) $\gamma_1 \gneqq \omega$ and $\omega \wedge \gamma_2 = 0_X$, (III) $\omega \wedge \gamma_1 = 0_X$ and $\gamma \gneqq \omega$ and (IV) $\omega \wedge \gamma_1 = 0_X$ and $\omega \wedge \gamma_2 = 0_X$ as $\omega \neq 1_X$.

Case I: Obviously $\gamma_1 \vee \gamma_2 \neq 1_X$ if $\gamma_1 \nleq \omega$ and $\gamma_2 \gneqq \omega$.

Case II:If $\omega \vee \gamma_2 \neq 1_X$, then obviously $\gamma_1 \vee \gamma_2 \neq 1_X$. Now suppose $\omega \vee \gamma_2 \neq 1_X$. Since $\gamma_1 \leq \omega$, then there exists $x_\alpha \in \omega$ such that $x_\alpha \notin \gamma_1$. As $\omega \wedge \gamma_2 = 0_X$, $x_\alpha \notin \gamma_2 \cdot x_\alpha \notin \gamma_1, \gamma_2$ imply that $\gamma_1 \vee \gamma_2 \neq 1_X$.

Case III: Similar to Case II.

Case IV: $\omega \wedge \gamma_1 = 0_X$ and $\omega \wedge \gamma_2 = 0_X$ imply that $\omega \wedge (\gamma_1 \vee \gamma_2) = 0_X$ which in turn imply that $\omega = 0_X$ if $\gamma_1 \vee \gamma_2 = 1_X$. As $\omega \neq 0_X$, we have $\gamma_1 \vee \gamma_2 \neq 1_X$.

On combining Theorems 2.12 and 2.13, we get Theorems 2.14 and 2.15 and the proofs of these two theorems can be proved similar to that of Theorems 2.12 and 2.13. $\hfill \Box$

Theorem 2.14. If there are two distinct fuzzy maximal closed sets and a fuzzy mean closed set in a fuzzy topological space, then the intersection of the two fuzzy maximal open sets is nonempty.

Theorem 2.15. If there are two distinct fuzzy minimal closed sets and a fuzzy mean closed set in a fuzzy topological space, then the intersection of the two fuzzy minimal closed sets is not equal to 1_X .

References

- Ajoy Mukherjee and Kallol Bhandhu Bagchi, On mean open set and mean closed sets, Kyungpook Math. J. 56 (2016), 1259-1265.
- 2. C.L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968), 182-190.
- 3. B.M. Ittanagi and R.S. Wali, On fuzzy minimal open and fuzzy maximal open sets in fuzzy topological spaces, International J. of Mathematical Sciences and Applications 1 2011.
- B.M. Ittanagi and S.S. Benchalli, On paraopen sets and maps in topological spaces, Kyungpook Math. J. 56 (2016), 301-310.
- F. Nakaoka and N. Oda, Some Properties of Maximal Open Sets, International Journal of Mathematics and Mathematical Sciences 21 (2003), 1331-1340.
- F. Nakaoka and N. Oda, *Minimal closed sets and maximal closed sets*, International Journal of Mathematics and Mathematical Sciences (2006), 1-8.
- S. Joseph, R. Balakumar and A. Swaminathan, On Fuzzy Paraopen Sets and Maps in Fuzzy Topological Spaces (submitted).
- 8. A. Swaminathan, On fuzzy Maximal, Minimal open and closed sets (submitted).
- 9. L.A. Zadeh, Fuzzy sets, Information and control 8 (1965), 338-353.

A. Swaminathan received M.Sc. from Bharathidasan University and received Ph.D., at Annamalai University. Since 2007 he has been at Annamalai University(deputed from Annamalai University to Government Arts College, Kumbakonam in 2017). His research interests include Topology and Fuzzy Topology.

Department of Mathematics, Government Arts College(Autonomous), Kumbakonam, Tamil Nadu-612 002, India.

e-mail: asnathanway@gmail.com

468