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SOME IDENTITIES INVOLVING THE DEGENERATE

BELL-CARLITZ POLYNOMIALS ARISING FROM

DIFFERENTIAL EQUATION†
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Abstract. In this paper we define a new degenerate Bell-Carlitz polyno-
mials. It also derives the differential equations that occur in the generating

function of the degenerate Bell-Carlitz polynomials. We establish some

new identities for the degenerate Bell-Carlitz polynomials. Finally, we per-
form a survey of the distribution of zeros of the degenerate Bell-Carlitz

polynomials.
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1. Introduction

Recently, we have studied in the area of the special numbers and polynomials.
Many generalizations of these polynomials have been studied(see [1, 2, 4, 5,
6]). The Bell-Carlitz polynomials Bc

n(x)(n ≥ 0), were introduced by Alain M.
Robert(see [3]).

The Bell-Carlitz polynomials Bc
n(x) are defined by the generating function

∞∑
n=0

Bc
n(x)

tn

n!
= e(xt+et−1) (see [3]). (1.1)

As is well known, the Bell numbers Bn are given by the generating function

∞∑
n=0

Bn
tn

n!
= e(e

t−1). (1.2)
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We define the degenerate Bell-Carlitz polynomials Bc
n(x, λ) by means of the

generating function

∞∑
n=0

Bc
n(x, λ)

tn

n!
= (1 + λ)

tx

λ e(e
t−1). (1.4)

Since (1 + λ)
tx
λ → ext as λ → 0, it is evident that (1.4) reduces to (1.1). Now,

we recall that the classical Stirling numbers of the first kind S1(n, k) and the
second kind S2(n, k) are defined by the relations(see [7])

(x)n =

n∑
k=0

S1(n, k)xk and xn =

n∑
k=0

S2(n, k)(x)k, (1.5)

respectively. Here (x)n = x(x − 1) · · · (x − n + 1) denotes the falling factorial
polynomial of order n. We also have

∞∑
n=m

S2(n,m)
tn

n!
=

(et − 1)m

m!
and

∞∑
n=m

S1(n,m)
tn

n!
=

(log(1 + t))m

m!
. (1.6)

Note that

G(t, x, λ) = (1 + λ)

tx

λ e(e
t−1)

satisfies

∂G(t, x, λ)

∂x
− log(1 + λ)

λ
t(1 + λ)

tx

λ e(e
t−1) = 0.

Substitute the series in (1.4) for G(t, x, λ) to get

∞∑
n=1

∂

∂x
Bc

n(x, λ)
tn

n!
=

∞∑
n=1

log(1 + λ)

λ
nBc

n−1(x, λ)
tn

n!
.

Thus we have the following theorem.

Theorem 1.1. The degenerate Bell-Carlitz polynomials Bc
n(x, λ) in generating

function (1.4) are the solution of equation

∂

∂x
Bc

n(x, λ)− n log(1 + λ)

λ
Bc

n−1(x, λ) = 0.

The generating function (1.4) is useful for deriving several properties of the
degenerate Bell-Carlitz polynomials Bc

n(x, λ). For example, we have the follow-
ing expression for these polynomials:

Theorem 1.2. For any positive integer n, we have

Bc
n(x, λ) =

n∑
k=0

k∑
l=0

(
n

k

)
S2(k, l)

(
log(1 + λ)

λ

)n−k

xn−k.
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Proof. By (1.2) and (1.6), we have

∞∑
n=0

Bc
n(x, λ)

tn

n!
= (1 + λ)

tx

λ e(e
t−1)

=

∞∑
n=0

(
x log(1 + λ)

λ

)n
tn

n!

∞∑
n=0

(et − 1)n

n!

=

∞∑
n=0

(
x log(1 + λ)

λ

)n
tn

n!

∞∑
n=0

( ∞∑
l=0

S2(n, l)

)
tn

n!

=
∞∑

n=0

(
n∑

k=0

k∑
l=0

(
n

k

)
S2(k, l)

(
x log(1 + λ)

λ

)n−k
)
tn

n!
.

On comparing the coefficients of tn

n! , the expected result of Theorem 1.2 is
achieved. �

The following basic properties of the degenerate Bell-Carlitz polynomials
Bc

n(x, λ) are derived form (1.4), (1.5), and (1.6). We, therefore, choose to omit
the details involved.

Theorem 1.3. For any positive integer n, we have

(1) Bc
n(x, λ) =

n∑
k=0

(
n

k

)(
log(1 + λ)

λ

)k

xkBn−k.

(2) Bc
n(x1 + x2, λ) =

n∑
l=0

(
n

l

)
Bc

l (x1, λ)xn−l2 λl−n(log(1 + λ))n−l.

(3) Bc
n(x1 + x2, λ) =

n∑
l=0

(
n

l

)
Bc

l (x1, λ)

∞∑
m=n−l

S1(m,n− l)λ
m+l−n(n− l)!

m!
xn−l2 .

Recently, in order to give explicit identities for special polynomials, differen-
tial equations arising from the generating functions of special polynomials are
studied by many authors(see [1, 2, 4, 5, 6]). Inspired by their work, we con-
struct a differential equations by generating function of degenerate Bell-Carlitz
polynomials Bc

n(x, λ) as follow. Let D denote differentiation with respect to t,
D2 denote differentiation twice with respect to t, and so on; that is, for positive
integer N ,

DNG =

(
∂

∂t

)N

G.

We derive a differential equations with coefficients bi(N, x, λ), which is satisfied
by

DNG(t, x, λ)− b0(N, x, λ)G(t, x, λ)− · · · − bN (N, x, λ)eNtG(t, x, λ) = 0.

For 0 ≤ i ≤ N , by using the coefficients bi(N, x, λ) of this differential equation,
we have explicit identities for the degenerate Bell-Carlitz polynomials. This
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paper is organized as follows. In Sect.2, we construct differential equations
arising from the generating functions of degenerate Bell-Carlitz polynomials.
We establish some new identities for the degenerate Bell-Carlitz polynomials.
In Sect.3, using numerical methods, we investigate the structure of zeros of the
degenerate Bell-Carlitz polynomials.

2. Differential equations associated with the degenerate Bell-Carlitz
polynomials

In this section, we consider differential equation arising from the generating
function of the degenerate Bell-Carlitz polynomials. Let

G = G(t, x, λ) = (1 + λ)

tx

λ e(e
t−1). (2.1)

Then, by (2.1), we have

G(1) =
d

dt
G(t, x) =

d

dt

(1 + λ)

tx

λ e(e
t−1)


= (1 + λ)

tx

λ e(e
t−1)

(
log(1 + λ)

λ
x+ et

)
=

(
log(1 + λ)

λ
x+ et

)
G,

(2.2)

G(2) =
d

dt
G(1) = etG +

(
log(1 + λ)

λ
x+ et

)
G(1)

= etG +

(
log(1 + λ)

λ
x+ et

)2

G

=

((
x log(1 + λ)

λ

)2

+

(
2

(
x log(1 + λ)

λ

)
+ 1

)
et + e2t

)
G,

(2.3)

and

G(3) =
d

dt
G(2) =

(
x log(1 + λ)

λ

)3

G

+

(
3

(
x log(1 + λ)

λ

)2

+ 3

(
x log(1 + λ)

λ

)
+ 1

)
etG

+

(
3

(
x log(1 + λ)

λ

)
+ 3

)
e2tG

+ e3tG.
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Continuing this process, we can guess that

G(N) =

(
d

dt

)N

G(t, x, λ) =

(
N∑
i=0

bi(N, x, λ)eit

)
G, (N = 0, 1, 2, . . .). (2.4)

Taking the derivative with respect to t in (2.4), we have

G(N+1) =
dG(N)

dt

=

(
N∑
i=0

ibi(N, x, λ)eit

)
G +

(
N∑
i=0

bi(N, x, λ)eit

)
G(1)

=

(
N∑
i=0

ibi(N, x, λ)eit

)
G +

(
N∑
i=0

bi(N, x, λ)eit

)(
log(1 + λ)

λ
+ et

)
G

=

{
N∑
i=0

(
log(1 + λ)

λ
x+ i

)
bi(N, x, λ)eit +

N∑
i=0

bi(N, x, λ)e(i+1)t

}
G

=

{
N∑
i=0

(
log(1 + λ)

λ
x+ i

)
bi(N, x, λ)eit +

N+1∑
i=1

bi−1(N, x, λ)eit

}
G.

(2.5)
On the other hand, by replacing N by N + 1 in (2.4), we get

G(N+1) =

(
N+1∑
i=0

bi(N + 1, x, λ)eit

)
G. (2.6)

Comparing the coefficients on both sides of (2.5) and (2.6), we obtain

b0(N + 1, x, λ) =
log(1 + λ)

λ
xb0(N, x, λ),

bN+1(N + 1, x, λ) = bN (N, x, λ),
(2.7)

and

bi(N + 1, x, λ) = bi−1(N, x, λ) +

(
log(1 + λ)

λ
x+ i

)
bi(N, x, λ), (1 ≤ i ≤ N).

(2.8)
In addition, by (2.4), we get

G = G(0) = b0(0, x, λ)G. (2.9)

By (2.9), we get

b0(0, x, λ) = 1. (2.10)

It is not difficult to show that(
log(1 + λ)

λ
+ et

)
G = G(1) =

(
1∑

i=0

bi(1, x, λ)eit

)
G

= b0(1, x, λ)G + b1(1, x, λ)etG.
(2.11)
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Thus, by (2.11), we also get

b0(1, x, λ) =
log(1 + λ)

λ
x, b1(1, x, λ) = 1. (2.12)

From (2.7), we note that

b0(N + 1, x, λ) =
log(1 + λ)

λ
xb0(N, x, λ) =

(
log(1 + λ)

λ

)2

x2b0(N − 1, x, λ)

= · · · =
(

log(1 + λ)

λ

)N

xNb0(1, x, λ)

=

(
log(1 + λ)

λ

)N+1

xN+1,

(2.13)
and

bN+1(N + 1, x) = bN (N, x, λ) = bN−1(N − 1, x, λ) = · · · = b1(1, x, λ) = 1.

(2.14)
For i = 1, 2, 3 in (2.8), we have

b1(N + 1, x, λ) =

N∑
k=0

(
log(1 + λ)

λ
x+ 1

)k

b0(N − k, x, λ), (2.15)

b2(N + 1, x, λ) =

N−1∑
k=0

(
log(1 + λ)

λ
x+ 2

)
b1(N − k, x, λ), (2.16)

and

b3(N + 1, x, λ) =

N−2∑
k=0

(
log(1 + λ)

λ
x+ 3

)k

b2(N − k, x, λ). (2.17)

Continuing this process, we can deduce that, for 1 ≤ i ≤ N,

bi(N + 1, x, λ) =
N−i+1∑
k=0

(
log(1 + λ)

λ
x+ i

)k

bi−1(N − k, x, λ). (2.18)

Here, we note that the matrix bi(j, x, , λ)0≤i,j≤N+1 is given by

1
log(1 + λ)

λ
x

(
log(1 + λ)

λ

)2

x2 · · · ·
(

log(1 + λ)

λ

)N+1

xN+1

0 1 · · · · · ·
0 0 1 · · · · ·
0 0 0 1 · · · ·
...

...
...

...
. . .

...
0 0 0 0 · · · 1
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Now, we give explicit expressions for bi(N + 1, x). By (2.15), (2.16), and (2.17),
we get

b1(N + 1, x, λ) =

N∑
k1=0

(
log(1 + λ)

λ
x+ 1

)k1

b0(N − k1, x, λ)

=

N∑
k1=0

(
log(1 + λ)

λ

)N−k1
(

log(1 + λ)

λ
x+ 1

)k1

xN−k1 ,

b2(N + 1, x, λ) =

N−1∑
k2=0

(
log(1 + λ)

λ
x+ 2

)k2

b1(N − k2, x, λ)

=

N−1∑
k2=0

N−1−k2∑
k1=0

(
log(1 + λ)

λ

)N−k2−k1−1( log(1 + λ)

λ
x+ 2

)k2

×
(

log(1 + λ)

λ
x+ 1

)k1

xN−k2−k1−1,

and

b3(N + 1, x, λ)

=

N−2∑
k3=0

(
log(1 + λ)

λ
x+ 3

)k3

b2(N − k3, x, λ)

=

N−2∑
k3=0

N−2−k3∑
k2=0

N−2−k3−k2∑
k1=0

(
log(1 + λ)

λ

)N−k3−k2−k1−2( log(1 + λ)

λ
x+ 3

)k3

×
(

log(1 + λ)

λ
x+ 2

)k2
(

log(1 + λ)

λ
x+ 1

)k1

xN−k3−k2−k1−2.

Continuing this process, we get

bi(N + 1, x, λ)

=

N−i+1∑
ki=0

N−i+1−ki∑
ki−1=0

· · ·
N−i+1−ki−···−k2∑

k1=0

(
log(1 + λ)

λ

)N−i+1−(k1−···−ki)

×
i∏

l=1

(
log(1 + λ)

λ
x+ l

)kl

xN−i+1−(k1−···−ki).

(2.19)

Therefore, by (2.19), we obtain the following theorem.

Theorem 2.1. For N = 0, 1, 2, . . . , the differential equations

G(N) =

(
N∑
i=0

bi(N, x, λ)eit

)
G
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have a solution

G = G(t, x, λ) = (1 + λ)

tx

λ e(e
t−1),

where

b0(N, x, λ) =

(
log(1 + λ)

λ

)N

xN ,

bi(N, x, λ) =

N−i∑
ki=0

N−i−ki∑
ki−1=0

· · ·
N−i−ki−···−k2∑

k1=0

(
log(1 + λ)

λ

)N−i−(k1−···−ki)

×
i∏

l=1

(
log(1 + λ)

λ
x+ l

)kl

xN−i−(k1−···−ki), (1 ≤ i ≤ N).

From (2.1), we note that

G(N) =
( d
dt

)NG(t, x, λ) =

∞∑
k=0

Bc
k+N (x, λ)

tk

k!
. (2.20)

From Theorem 2.1 and (2.20), we can derive the following equation:

∞∑
k=0

Bc
k+N (x)

tk

k!
= G(N) =

(
N∑
i=0

bi(N, x, λ)eit

)
G

=

N∑
i=0

bi(N, x, λ)

( ∞∑
l=0

il
tl

l!

)( ∞∑
m=0

Bc
m(x, λ)

tm

m!

)

=

N∑
i=0

bi(N, x, λ)

( ∞∑
k=0

k∑
m=0

(
k

m

)
ik−mBc

m(x, λ)
tk

k!

)

=

∞∑
k=0

(
N∑
i=0

k∑
m=0

(
k

m

)
ik−mbi(N, x, λ)Bc

m(x, λ)

)
tk

k!
.

(2.21)

By comparing the coefficients on both sides of (2.21), we obtain the following
theorem.

Theorem 2.2. For k,N = 0, 1, 2, . . . , we have

Bc
k+N (x, λ) =

N∑
i=0

k∑
m=0

(
k

m

)
ik−mbi(N, x, λ)Bc

m(x, λ), (2.22)



Some identities involving the degenerate Bell-Carlitz polynomials 435

where

b0(N, x, λ) =

(
log(1 + λ)

λ

)N

xN ,

bi(N, x, λ) =

N−i∑
ki=0

N−i−ki∑
ki−1=0

· · ·
N−i−ki−···−k2∑

k1=0

(
log(1 + λ)

λ

)N−i−(k1−···−ki)

×
i∏

l=1

(
log(1 + λ)

λ
x+ l

)kl

xN−i−(k1−···−ki), (1 ≤ i ≤ N).

Let us take k = 0 in (2.22). Then, we have the following corollary.

Corollary 2.3. For N = 0, 1, 2, . . . , we have

Bc
N (x, λ) =

N∑
i=0

bi(N, x, λ).

3. Zeros of the degenerate Bell-Carlitz polynomials

This section aims to demonstrate the benefit of using numerical investigation
to support theoretical prediction and to discover new interesting pattern of the
zeros of the degenerate Bell-Carlitz polynomials Bc

n(x, λ). By using computer,
the degenerate Bell-Carlitz polynomials Bc

n(x, λ) can be determined explicitly.
The first few examples of degenerate Bell-Carlitz polynomials Bc

n(x, λ) are

Bc
0(x, λ) = 1,

Bc
1(x, λ) = 1 + x

log(1 + λ)

λ
,

Bc
2(x, λ) = 2 + 2x

log(1 + λ)

λ
+ x2

(
log(1 + λ)

λ

)2

,

Bc
3(x, λ) = 5 + 6x

log(1 + λ)

λ
+ 3x2

(
log(1 + λ)

λ

)2

+ x3
(

log(1 + λ)

λ

)3

,

Bc
4(x, λ) = 15 + 20x

log(1 + λ)

λ
+ 12x2

(
log(1 + λ)

λ

)2

+ 4x3
(

log(1 + λ)

λ

)3

+ x4
(

log(1 + λ)

λ

)4

,

Bc
5(x, λ) = 52 + 75x

log(1 + λ)

λ
+ 50x2

(
log(1 + λ)

λ

)2

+ 20x3
(

log(1 + λ)

λ

)3

+ 5x4
(

log(1 + λ)

λ

)4

+ x5
(

log(1 + λ)

λ

)5

.
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We investigate the beautiful zeros of the degenerate Bell-Carlitz polynomials
Bc

n(x, λ) by using a computer. We plot the zeros of the Bc
n(x) for n = 5, 10, 15, 20

and x ∈ C(Figure 2). In Figure 1(top-left), we choose n = 30, λ = 1/10. In

-10 -5 0 5 10 15 20

-20

-10

0

10

20

Re(x)

Im(x)

-10 -5 0 5 10 15 20

-20

-10

0

10

20
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-10

0

10

20

Re(x)

Im(x)

-10 -5 0 5 10 15 20

-20

-10

0

10

20

Re(x)

Im(x)

Figure 1. Zeros of Bc
n(x, λ)

Figure 1(top-right), we choose n = 30, λ = 5/10. In Figure 1(bottom-left), we
choose n = 30, λ = 7/10. In Figure 1(bottom-right), we choose n = 30, λ =
9/10. Prove that Bc

n(x, λ), x ∈ C, has Im(x) = 0 reflection symmetry analytic
complex functions(see Figure 2). Stacks of zeros of the degenerate Bell-Carlitz
polynomials Bc

n(x, λ) for 1 ≤ n ≤ 50 from a 3-D structure are presented(Figure
3). In Figure 2(left), we choose n = 30, λ = 1/10. In Figure 2(right), we choose
n = 30, λ = 9/10. Plot of real zeros of degenerate Bell-Carlitz polynomials
Bc

n(x, λ) = 0 for 1 ≤ n ≤ 50 structure are presented(Figure 4). In Figure 2(left),
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Figure 2. Stacks of zeros of Bc
n(x, λ) = 0, 1 ≤ n ≤ 50

Figure 3. Real zeros of Bc
n(x, λ) for 1 ≤ n ≤ 50

we choose λ = 1/10. In Figure 2(right), we choose λ = 9/10. We observe a
remarkably regular structure of the complex roots of the degenerate Bell-Carlitz
polynomials Bc

n(x, λ). We hope to verify a remarkably regular structure of the
complex roots of the degenerate Bell-Carlitz polynomials Bc

n(x, λ). Next, we
calculated an approximate solution satisfying Bc

n(x, λ), x ∈ C. The results are
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given in Table 1.

Table 1. Approximate solutions of Bc
n(x, 9/10) = 0, x ∈ C

degree n x

1 −1.4022

2 −1.4022− 1.4022i, −1.4022 + 1.4022i

3 −1.8540, −1.1763− 2.4600i, −1.1763 + 2.4600i

4 −1.9383 + 1.0217i, −1.9383− 1.0217i,

−0.8660− 3.3657i, −0.8660 + 3.3657i

5 −2.2694, −1.8554− 1.8871i, −1.8554 + 1.8871i,

−0.5154 + 4.1795i, −0.5154− 4.1795i

6 −2.3810− 0.8481i, −2.3810 + 0.8481i, −1.6832 + 2.6641i,

−1.6832− 2.6641i, −0.1423− 4.9295i, −0.1423 + 4.9295i
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