DOI QR코드

DOI QR Code

The bubble problem of the plasma facing material: A finite element study

  • Kang, Xiaoyan (State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences) ;
  • Cheng, Xiyue (State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences) ;
  • Deng, Shuiquan (State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences)
  • Received : 2019.11.11
  • Accepted : 2020.03.19
  • Published : 2020.10.25

Abstract

The damage of first wall material in fusion reactor due to the bubbles caused by plasma has been studied by introducing a relation between the von Mises equivalent stress and the temperature field. The locations and shapes of the bubbles and the synergetic effect between the different bubbles under steady operational conditions have been studied using the finite elements method. Under transient heat loads, plastic deformations have been found to occur, and are significantly enhanced by the presence of the bubbles. The calculated concentration locations of von Mises equivalent stress are well consistent with the observed crack positions of the tungsten surface in many test experiments. Our simulations show that the damage of the bubbles is not severe enough to lead to catastrophic failure of the tungsten armor; however, it can cause local and gradual detachment of tungsten surface, which provides a reasonable explanation for the observed pits and rough or hairy surface morphology etc. Considering the transient heat loads, the lower bound of the security thickness of the tungsten tile is estimated to be greater than 2 mm.

Keywords

References

  1. G. Janeschitz, I. Jct, HTs, Plasma-wall interaction issues in ITER, J. Nucl. Mater. 290 (2001) 1-11. https://doi.org/10.1016/S0022-3115(00)00623-1
  2. H. Bolt, V. Barabash, W. Krauss, J. Linke, R. Neu, S. Suzuki, N. Yoshida, A.U. Team, Materials for the plasma-facing components of fusion reactors, J. Nucl. Mater. 329 (2004) 66-73. https://doi.org/10.1016/j.jnucmat.2004.04.005
  3. V.A. Chuyanov, ITER EDA project status, J. Nucl. Mater. 233 (1996) 4-8. https://doi.org/10.1016/S0022-3115(96)00121-3
  4. A.A. Shoshin, A.S. Arakcheev, A.V. Arzhannikov, A.V. Burdakov, I.A. Ivanov, A.A. Kasatov, K.N. Kuklin, S.V. Polosatkin, V.V. Postupaev, S.L. Sinitsky, A.A. Vasilyev, L.N. Vyacheslavov, Study of plasma-surface interaction at the GOL-3 facility, Fusion Eng. Des. 114 (2017) 157-179. https://doi.org/10.1016/j.fusengdes.2016.12.019
  5. J.-C. Wang, W. Wang, R. Wei, X. Wang, Z. Sun, C. Xie, Q. Li, G.-N. Luo, Effect of Ti interlayer on the bonding quality of W and steel HIP joint, J. Nucl. Mater. 485 (2017) 8-14. https://doi.org/10.1016/j.jnucmat.2016.12.024
  6. Z.J. Bergstrom, M.A. Cusentino, B.D. Wirth, A molecular dynamics study of subsurface hydrogen-helium bubbles in tungsten, fusion, Sci. Technol. 71 (2017) 122-135.
  7. E. Bernard, R. Sakamoto, E. Hodille, A. Kreter, E. Autissier, M.F. Barthe, P. Desgardin, T. Schwarz-Selinger, V. Burwitz, S. Feuillastre, S. Garcia-Argote, G. Pieters, B. Rousseau, M. Ialovega, R. Bisson, F. Ghiorghiu, C. Corr, M. Thompson, R. Doerner, S. Markelj, H. Yamada, N. Yoshida, C. Grisolia, Tritium retention in W plasma-facing materials: impact of the material structure and helium irradiation, Nucl. Mater. Energy. 19 (2019) 403-410. https://doi.org/10.1016/j.nme.2019.03.005
  8. S. Blondel, D.E. Bernholdt, K.D. Hammond, B.D. Wirth, Continuum-scale modeling of helium bubble bursting under plasma-exposed tungsten surfaces, Nucl. Fusion 58 (2018) 126034. https://doi.org/10.1088/1741-4326/aae8ef
  9. X. Yang, W. Qiu, L. Chen, J. Tang, Tungstenepotassium: a promising plasmafacing material, Tungsten 1 (2019) 141-158. https://doi.org/10.1007/s42864-019-00018-5
  10. C. Linsmeier, M. Rieth, J. Aktaa, T. Chikada, A. Hoffmann, J. Hoffmann, A. Houben, H. Kurishita, X. Jin, M. Li, A. Litnovsky, S. Matsuo, A. von Müller, V. Nikolic, T. Palacios, R. Pippan, D. Qu, J. Reiser, J. Riesch, T. Shikama, R. Stieglitz, T. Weber, S. Wurster, J.H. You, Z. Zhou, Development of advanced high heat flux and plasma-facing materials, Nucl. Fusion 57 (2017), 092007. https://doi.org/10.1088/1741-4326/aa6f71
  11. L. Wang, T. Hao, B.-L. Zhao, T. Zhang, Q.-F. Fang, C.-S. Liu, X.-P. Wang, L. Cao, Evolution behavior of helium bubbles and thermal desorption study in helium-charged tungsten film, J. Nucl. Mater. 508 (2018) 107-115. https://doi.org/10.1016/j.jnucmat.2018.05.033
  12. S.B. Gilliam, S.M. Gidcumb, N.R. Parikh, D.G. Forsythe, B.K. Patnaik, J.D. Hunn, L.L. Snead, G.P. Lamaze, Retention and surface blistering of helium irradiated tungsten as a first wall material, J. Nucl. Mater. 347 (2005) 289-297. https://doi.org/10.1016/j.jnucmat.2005.08.017
  13. G.N. Luo, K. Umstadter, W.M. Shu, W. Wampler, G.H. Lu, Behavior of tungsten with exposure to deuterium plasmas, Nucl. Instrum. Methods Phys. Res. B 267 (2009) 3041-3045. https://doi.org/10.1016/j.nimb.2009.06.049
  14. C.S. Becquart, C. Domain, Ab initio calculations about intrinsic point defects and He in W, Nucl. Instrum. Methods Phys. Res. B 255 (2007) 23-26. https://doi.org/10.1016/j.nimb.2006.11.006
  15. Y.-L. Liu, Y. Zhang, H.-B. Zhou, G.-H. Lu, F. Liu, G.N. Luo, Vacancy trapping mechanism for hydrogen bubble formation in metal, Phys. Rev. B 79 (2009) 172103. https://doi.org/10.1103/PhysRevB.79.172103
  16. Y.-W. You, D. Li, X.-S. Kong, X. Wu, C.S. Liu, Q.F. Fang, B.C. Pan, J.L. Chen, G.N. Luo, Clustering of H and He, and their effects on vacancy evolution in tungsten in a fusion environment, Nucl. Fusion 54 (2014) 103007. https://doi.org/10.1088/0029-5515/54/10/103007
  17. K.O.E. Henriksson, K. Nordlund, J. Keinonen, D. Sundholm, M. Patzschke, Simulations of the initial stages of blistering in helium implanted tungsten, Phys. Scripta T108 (2004) 95-98.
  18. K.O.E. Henriksson, K. Nordlund, J. Keinonen, Molecular dynamics simulations of helium cluster formation in tungsten, Nucl. Instrum. Methods Phys. Res. B. 244 (2006) 377-391. https://doi.org/10.1016/j.nimb.2005.10.020
  19. N. Juslin, B.D. Wirth, Interatomic potentials for simulation of He bubble formation in W, J. Nucl. Mater. 432 (2013) 61-66. https://doi.org/10.1016/j.jnucmat.2012.07.023
  20. N. Enomoto, S. Muto, T. Tanabe, J.W. Davis, A.A. Haasz, Grazing-incidence electron microscopy of surface blisters in single- and polycrystalline tungsten formed by H+, D+ and He+ irradiation, J. Nucl. Mater. 385 (2009) 606-614. https://doi.org/10.1016/j.jnucmat.2009.01.298
  21. J.-H. You, Mechanics of tungsten blistering: a finite element study, J. Nucl. Mater. 437 (2013) 24-28. https://doi.org/10.1016/j.jnucmat.2013.01.349
  22. M. Li, J.-H. You, Mechanics of tungsten blistering II: analytical treatment and fracture mechanical assessment, J. Nucl. Mater. 465 (2015) 702-709. https://doi.org/10.1016/j.jnucmat.2015.07.007
  23. Y.Z. Jia, W. Liu, B. Xu, G.N. Luo, C. Li, S.L. Qu, T.W. Morgan, G. De Temmerman, Thermal shock behaviour of blisters on W surface during combined steadystate/ pulsed plasma loading, Nucl. Fusion 55 (2015) 113015. https://doi.org/10.1088/0029-5515/55/11/113015
  24. H. Guo, M. Xia, Q. Yan, L. Guo, J. Chen, C. Ge, Microstructure of medium energy and high density helium ion implanted tungsten, Acta Phys. Sin. 65 (2016), 077803.
  25. S.V. Patankar, Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing Corporation, Washington DC, 1980.
  26. K. Tomabechi, J.R. Gilleland, Y.A. Sokolov, R. Toschi, Iter conceptual design, Nucl. Fusion 31 (1991) 1135-1224. https://doi.org/10.1088/0029-5515/31/6/011
  27. P. Zhang, J. Zhao, Y. Qin, B. Wen, Numerical simulation of the combined effects of plasma heating and neutron heating loads on the ITER first wall, Fusion Eng. Des. 86 (2011) 45-50. https://doi.org/10.1016/j.fusengdes.2010.08.003
  28. W.D. Pilkey, D.F. Pilkey, Peterson's Stress Concentration Factors, 3rd rev. edn. ed., Springer, New York, 2008.
  29. J.F. Nye, Physical Properties of Crystals, Oxford University Press, London, 1967.
  30. Y. Wang, S. Liang, P. Xiao, J. Zou, FEM simulations of tensile deformation and fracture analysis for CuW alloys at mesoscopic level, Comput. Mater. Sci. 50 (2011) 3450-3454. https://doi.org/10.1016/j.commatsci.2011.07.008
  31. J.W. Davis, P.D. Smith, ITER material properties handbook, J. Nucl. Mater. 233 (1996) 1593-1596. https://doi.org/10.1016/S0022-3115(96)00202-4
  32. M. Bhuyan, S.R. Mohanty, C.V.S. Rao, P.A. Rayjada, P.M. Raole, Plasma focus assisted damage studies on tungsten, Appl. Surf. Sci. 264 (2013) 674-680. https://doi.org/10.1016/j.apsusc.2012.10.093
  33. M.J. Inestrosa-Izurieta, E. Ramos-Moore, L. Soto, Morphological and structural effects on tungsten targets produced by fusion plasma pulses from a table top plasma focus, Nucl. Fusion 55 (2015), 093011. https://doi.org/10.1088/0029-5515/55/9/093011
  34. J. Schijve, Fatigue of Structures and Materials, second ed., Springer, New York, 2009.
  35. W.M. Shu, E. Wakai, T. Yamanishi, Blister bursting and deuterium bursting release from tungsten exposed to high fluences of high flux and low energy deuterium plasma, Nucl. Fusion 47 (2007) 201-209. https://doi.org/10.1088/0029-5515/47/3/006
  36. S. Kajita, W. Sakaguchi, N. Ohno, N. Yoshida, T. Saeki, Formation process of tungsten nanostructure by the exposure to helium plasma under fusion relevant plasma conditions, Nucl. Fusion 49 (2009), 095005. https://doi.org/10.1088/0029-5515/49/9/095005
  37. Y.Z. Jia, W. Liu, B. Xu, G.N. Luo, C. Li, B.Q. Fu, G. De Temmerman, Nanostructures and pinholes on W surfaces exposed to high flux D plasma at high temperatures, J. Nucl. Mater. 463 (2015) 312-315. https://doi.org/10.1016/j.jnucmat.2014.11.054
  38. Y. Ding, C. Ma, M. Li, Q. Hou, Molecular dynamics study on the interactions between helium projectiles and helium bubbles pre-existing in tungsten surfaces, Nucl. Instrum. Methods Phys. Res. B. 368 (2016) 50-59. https://doi.org/10.1016/j.nimb.2015.11.040
  39. J. Cui, Z. Wu, Q. Hou, Estimation of the lifetime of small helium bubbles near tungsten surfaces - a methodological study, Nucl. Instrum. Methods Phys. Res. B. 383 (2016) 136-142. https://doi.org/10.1016/j.nimb.2016.07.001
  40. B.L. Zhang, J. Wang, M. Li, Q. Hou, A molecular dynamics study of helium bubble formation and gas release near titanium surfaces, J. Nucl. Mater. 438 (2013) 178-182. https://doi.org/10.1016/j.jnucmat.2013.03.033
  41. J. Song, N.-K. Kim, H.-S. Kim, Y. Jin, K.-B. Roh, G.-H. Kim, Deuterium ion irradiation induced blister formation and destruction, Fusion Eng. Des. 109-111 (2016) 624-628. https://doi.org/10.1016/j.fusengdes.2016.02.033
  42. D. Nishijima, M.Y. Ye, N. Ohno, S. Takamura, Formation mechanism of bubbles and holes on tungsten surface with low-energy and high-flux helium plasma irradiation in NAGDIS-II, J. Nucl. Mater. 329 (2004) 1029-1033. https://doi.org/10.1016/j.jnucmat.2004.04.129
  43. A.A. Airapetov, L.B. Begrambekov, I.Y. Gretskaya, A.V. Grunin, M.Y. Dyachenko, N.A. Puntakov, Y.A. Sadovskiy, Thermal cycling and high power density hydrogen ion beam irradiation of tungsten layers on tungsten substrate, J. Phys. Conf. Ser. 748 (2016), 012009. https://doi.org/10.1088/1742-6596/748/1/012009
  44. T. Hirai, K. Ezato, P. Majerus, ITER relevant high heat flux testing on plasma facing surfaces, Mater. Trans. 46 (2005) 412-424. https://doi.org/10.2320/matertrans.46.412
  45. G. Federici, C.H. Skinner, J.N. Brooks, J.P. Coad, C. Grisolia, A.A. Haasz, A. Hassanein, V. Philipps, C.S. Pitcher, J. Roth, W.R. Wampler, D.G. Whyte, Plasma-material interactions in current tokamaks and their implications for next step fusion reactors, Nucl. Fusion 41 (2001), 1967-2137. https://doi.org/10.1088/0029-5515/41/12/218
  46. S. Huang, Y. Zhao, W. Wang, Numerical evaluation on heat shock resistance of two ITER-like first wall mockups, J. Fusion Energy 34 (2015) 1465-1477. https://doi.org/10.1007/s10894-015-9942-3
  47. M.J. Baldwin, R.P. Doerner, Formation of helium induced nanostructure 'fuzz' on various tungsten grades, J. Nucl. Mater. 404 (2010) 165-173. https://doi.org/10.1016/j.jnucmat.2010.06.034
  48. N.P. Taylor, R. Pampin, Activation properties of tungsten as a first wall protection in fusion power plants, Fusion Eng. Des. 81 (2006) 1333-1338. https://doi.org/10.1016/j.fusengdes.2005.05.010
  49. Y. Igitkhanov, B. Bazylev, Evaluation of energy and particle impact on the plasma facing components in DEMO, Fusion Eng. Des. 87 (2012) 520-524. https://doi.org/10.1016/j.fusengdes.2012.01.013
  50. S. Sharafat, N.M. Ghoniem, M. Anderson, B. Williams, J. Blanchard, L. Snead, Micro-engineered first wall tungsten armor for high average power laser fusion energy systems, J. Nucl. Mater. 347 (2005) 217-243. https://doi.org/10.1016/j.jnucmat.2005.08.012
  51. M.F. Ashby, H. Shercliff, D. Cebon, Materials: Engineering, Science, Processing and Design, Elsevier, Oxford, 2014.