DOI QR코드

DOI QR Code

Corrosion Behavior of Hastelloy C-276 for Carbon-anode-based Oxide Reduction Applications

  • 투고 : 2020.06.22
  • 심사 : 2020.08.07
  • 발행 : 2020.09.30

초록

The corrosion behavior of Hastelloy C-276 was investigated to identify its applicability for carbon-anode-based oxide reduction (OR), in which Cl2 and O2 are simultaneously evolved at the anode. Under a 30 mL·min-1 Cl2 + 170 mL·min-1 Ar flow, the corrosion rate was less than 1 g·m-2·h-1 up to 500℃, whereas the rate increased exponentially from 500 to 700℃. The effects of the Cl2-O2 composition on the corrosion rate at flow rates of 30 mL·min-1 Cl2, 20 mL·min-1 Cl2 + 10 mL·min-1 O2, and 10 mL·min-1 Cl2 + 20 mL·min-1 O2 with a constant 170 mL·min-1 Ar flow rate at 600℃ was analyzed. Based on the data from an 8 h reaction, the fastest corrosion rate was observed for the 20 mL·min-1 Cl2 + 10 mL·min-1 O2 case, followed by 30 mL·min-1 Cl2 and 10 mL·min-1 Cl2 + 20 mL·min-1 O2. The effects of the chlorine flow rate on the corrosion rate were negligible within the 5-30 mL·min-1 range. A surface morphology analysis revealed the formation of vertical scratches in specimens that reacted under the Cl2-O2 mixed gas condition.

키워드

참고문헌

  1. E.Y. Choi, J. Lee, D.H. Heo, S.K. Lee, M.K. Jeon, S.S. Hong, S.W. Kim, H.W. Kang, S.C. Jeon, and J.M. Hur, "Electrolytic reduction runs of 0.6 kg scale-simulated oxide fuel in a $Li_2O$-LiCl molten salt using metal anode shrouds", J. Nucl. Mater., 489, 1-8 (2017). https://doi.org/10.1016/j.jnucmat.2017.03.035
  2. Y. Sakamura and T. Omori, "Electrolytic reduction and electrorefining of uranium to develop pyrochemical reprocessing of oxide fuels", Nucl. Technol., 171(3), 266-275 (2010). https://doi.org/10.13182/NT10-A10861
  3. S.D. Herrmann, S.X. Li, M.F. Simpson, and S. Phongikaroon, "Electrolytic reduction of spent nuclear oxide fuel as part of an integral process to separate and recover actinides from fission products", Sep. Sci. Technol., 41(10), 1965-1983 (2006). https://doi.org/10.1080/01496390600745602
  4. S.W. Kim, M.K. Jeon, H.W. Kang, S.K. Lee, E.Y. Choi, W. Park, S.S. Hong, S.C. Oh, and J.M. Hur, "Carbon anode with repeatable use of LiCl molten salt for electrolytic reduction in pyroprocessing", J. Radioanal. Nucl. Chem., 310(1), 463-467 (2016). https://doi.org/10.1007/s10967-016-4786-5
  5. S.W. Kim, D.H. Heo, S.K. Lee, M.K. Jeon, W. Park, J.M. Hur, S.S. Hong, S.C. Oh, and E.Y. Choi, "A preliminary study of pilot-scale electrolytic reduction of $UO_2$ using a graphite anode", Nucl. Eng. Technol., 49(7), 1451-1456 (2017). https://doi.org/10.1016/j.net.2017.05.004
  6. S.-K. Lee, M.K. Jeon, S.-W. Kim, E.-Y. Choi. J. Lee, S.-S. Hong, S.-C. Oh, and J.-M. Hur, "Evaluation of Ptanode stability in repeated electrochemical oxide reduction reactions for pyroprocessing", J. Radioanal. Nucl. Chem., 316(3), 1053-1058 (2018). https://doi.org/10.1007/s10967-018-5765-9
  7. M.H. Brown, W.B. Delong, and J.R. Auld, "Corrosion by chlorine and by hydrogen chloride at high temperatures", Ind. Eng. Chem., 39(7), 839-844 (1947). https://doi.org/10.1021/ie50451a008
  8. Y. Ihara, H. Ohgame, and K. Sakiyama, "The corrosion behaviour of iron in hydrogen chloride gas and gas mixtures of hydrogen chloride and oxygen at high temperatures", Corros. Sci., 21(12), 805-817 (1981). https://doi.org/10.1016/0010-938X(81)90023-8
  9. Y. Ihara, H. Ohgame, K. Sakiyama, and K. Hashimoto, "The corrosion behaviour of nickel in hydrogen chloride gas and gas mixtures of hydrogen chloride and oxygen at high temperatures", Corros. Sci., 22(10), 901-912 (1982). https://doi.org/10.1016/0010-938X(82)90060-9
  10. Y. Ihara, H. Ohgame, K. Sakiyama, and K. Hashimoto, "The corrosion behaviour of chromium in hydrogen chloride gas and gas mixtures of hydrogen chloride and oxygen at high temperatures", Corros. Sci., 23(2), 167-181 (1983). https://doi.org/10.1016/0010-938X(83)90114-2
  11. M.K. Jeon, S.-W. Kim, and E.-Y. Choi, "Corrosion behavior of stainless steel 316 for carbon anode oxide reduction application", J. Nucl. Fuel Cycle Waste Technol., 18(2), 169-177 (2020). https://doi.org/10.7733/jnfcwt.2020.18.2.169
  12. M.K. Jeon, S.-W. Kim, S.-K. Lee, and E.-Y. Choi, "Corrosion behavior of Inconel X-750 for carbon anode oxide reduction application", J. Nucl. Fuel Cycle Waste Technol., 18(3), 355-362 (2020). https://doi.org/10.7733/jnfcwt.2020.18.3.355
  13. Special Metals Company. https://www.specialmetals.com
  14. HSC chemistry software, Outotec, Pori, Finland.
  15. I. Ilic, B. Krstev, K. Cerovic, and S. Stopic, "The study of chlorination of nickel oxide by chlorine and calcium chloride in the presence of active additives", Scand. J. Metall., 26(1), 14-19 (1997).
  16. T.A. Anufrieva, L.E. Derlvukova, and M.V. Vinokurova, "Interaction of nickel oxide with chlorine", Russ. J. Inorg. Chem., 46(1), 16-19 (2001).