DOI QR코드

DOI QR Code

Natural frequency analysis of tractor tire with different ground contacts and inflation pressures

  • Cuong, Do Minh (Department of Mechanical Engineering, University of Agriculture and Forestry, Hue University) ;
  • Sihong, Zhu (College of Engineering, Nanjing Agricultural University)
  • Received : 2020.03.03
  • Accepted : 2020.04.14
  • Published : 2020.10.25

Abstract

This paper presents the results of the study of vertically natural frequency of tractor tires are effected by changing different ground contacts and inflation pressures using the Free Decay Method. The results show that the natural frequencies of the tire are not affected while the vertical acceleration increased strongly due to the increase of inflation pressure when the tire performs free decay vibration on rigid ground. In addition, the number of natural frequency peaks of the tire also increases with increasing tire inflation pressure. On the other hand, the natural frequencies of the tractor tire increases strongly while the vertical acceleration decreases slightly with the increase of tire inflation pressure as the tire performs free decay vibration on soft soil. Further, the natural frequencies of tire-soil system are always higher than that of tire only, and it changed with changing the soil depth. Results also show the natural frequency of tire and tire-soil system is in the range of 3.0 to 10.0 Hz that lie within the most critical natural frequency range of the human body. These findings have to be mentioned and used as design parameters of the tractor suspension system.

Keywords

References

  1. Bawadi, N.F., Nayan, K.A.M., Taha, M.R. and Omar, N.A. (2016), "Estimate of small stiffness and damping ratio in residual soil using spectral analysis of surface wave method", MATEC Web of Conferences, 47, EDP Sciences. https://doi.org/10.1051/matecconf/20164703017.
  2. Bekker, M.G. (1956), Theory of Land to Locomotion: The Mechanics of Vehicle Mobility, 2nd Edition, University of Michigan Press, Michigan.
  3. Bekker, M.G. (1969), Introduction to Terrain Vehicle System, University of Michigan Press, Michigan.
  4. Black, C.A. (1965), Methods of Soil Analysis (part 1), Physical and Mineralogical Properties, Including Statistics of Measurements and Sampling, American Society of Agronomy, Soil Science Society of America, Wisconsin, USA, 375-377 and 552-557.
  5. Bolton, M.D. and Wilson, J.M.R. (1990), Soil Stiffness and Damping, Structural Dynamics, Rotterdam: Balkema.
  6. Bouyoucos, G.J. (1927), "The hydrometer as a new method for the mechanical analysis of soils", Soil Sci., 23(5), 343-354. https://doi.org/10.1097/00010694-192705000-00002
  7. Caprara, C., Fabbri, A., Guarnieri, A. and Molari, G. (2000), "Static and dynamics characterisation of the tractors tyres (Caratterizzazione statica e dinamica dei pneumatici delle trattrici)", Rivista di Ingegneria Agraria, 2, 96-103.
  8. Cautes, G. and Nastac, S. (2002), "Mathematical model for frequency-dependent soil propagation analysis", The Annals of 'Dunarea de jos' University of Galati: Fascicle XIV Mechanical Engineering, 23-26. http://arthra.ugal.ro/xmlui/handle/123456789/4531.
  9. Celebi, E., Firat, S.C. and Ankaya, I. (2006), "The effectiveness of wave barriers on the dynamic stiffness coefficients of foundations using boundary element method", Appl. Math. Comput., 180, 683-699. https://doi.org/10.1016/j.amc.2006.01.008.
  10. Cuong, D.M., Ngoc, N.T., Ma, R. and Zhu, S.H. (2018), "The use of the semi-empirical method to establish a damping model for tire-soil system", Coupl. Syst. Mech., 7(4), 395-406. https://doi.org/10.12989/csm.2018.7.4.395.
  11. Cuong, D.M., Zhu, S. and Zhu, Y. (2013), "Effects of tyre inflation pressure and forward speed on vibration of an unsuspended tractor", J. Terrramech., 50(3), 185-98. https://doi.org/10.1016/j.jterra.2013.05.001.
  12. Cuong, D.M., Zhu, S.H. and Ngoc, N.T. (2014), "Study on the variation characteristics of vertical equivalent damping ratio of tire-soil system using semi-empirical model", J. Terramech., 51, 67-80. https://doi.org/10.1016/j.jterra.2013.10.002.
  13. Cuong, D.M., Zhu, S.H., Hung, D.V. and Ngoc, N.T. (2013), "Study on the vertical stiffness and damping coefficient of tractor tire using semi-empirical model", Hue Uni. J. Sci., 83, 5-15. https://doi.org/10.26459/jard.v83i5.3071.
  14. Cutini, M., Brambilla, M. and Bisaglia, C. (2017), "Whole-body vibration in farming: background document for creating a simplified procedure to determine agricultural tractor vibration comfort", Agricul., 7(10), 1-20. https://doi.org/10.3390/agriculture7100084.
  15. Daniel, M.L., Haroldo, C.F., Mauri, M.T., Paulo, R.C. and Marconi, R.F.J. (2017), "Dynamic traction of a mechanized set based on technical and operational parameters", Eng. Agric., 37(3), 484-492. https://doi.org/10.1590/1809-4430-eng.agric.v37n3p484-492/2017.
  16. Deltenre, A. and Detain, M.F. (1990), "Numerical simulation of agricultural tractors ride vibration", AgEng, Berlin, 1-12.
  17. Elsalam, A.., Gohary, M.A. and El-Gamal, H.A. (2017), "Modal analysis on tire with respect to different Parameters", Alex. Eng. J., Alex. Univ., 56(4), 345-357. https://doi.org/10.1016/j.aej.2016.09.022
  18. Emam, M.A.A., Shaaban, S., El-Demerdash, S. and El-Zomor, H. (2011), "A tyre-terrain interaction model for off-road vehicles", J. Mechan. Eng. Res., 3, 226-238.
  19. Ferhadbegovic, B. (2009), "Entwicklung und applikation eines instationaren reifenmodells zur fahrdynamiksimulation von ackerschleppern", Dissertation Universitat Stuttgart, Shaker Verlag Aachen, Forschungsbericht Agrartechnik des Arbeitskreises Forschung und Lehre der Max-Eyth-Gesell, Schaft Agrartechnik im VDI, 475.
  20. GB/T2979-2008 (2008), Size Desination, Dimensions, Inflation Pressure and Load Capacity for Agricultural Tyres, Chinese standard.
  21. Goering, C.E., Stone, M.L., Smith, D.W. and Turnquist, P.K. (2003), Off-road Vehicle Engineering Principles, St. Joseph, American Society of Agricultural Engineers, Mich.
  22. Guan, Y., Cheng, G., Zhao, G. and Zhang, H. (2011), "Investigation of the vibration characteristics of radial tires using experimental and numerical techniques", J. Reinf. Plast. Compos., 30, 2035-2050. https://doi.org/10.1177/0731684411431764.
  23. Hildebrand, R., Keskinen, E. and Navarrete, J.A.R. (2008), "Vehicle vibrating on a soft compacting soil half-space: Ground vibrations, terrain damage, and vehicle vibrations", J. Terramech., 45, 121-136. https://doi.org/10.1016/j.jterra.2008.09.003.
  24. Jia, L., Xu, Y. and Zhang, J. (2005), "Free vibration analysis of radial pneumatic tires using bezier functions", J. Sound Vib., 285, 887-903. https://doi:10.1016/j.jsv.2004.09.004.
  25. Karakus,M., Cavus, A. and Colakoglu, M. (2017), "Vibration analysis of a tire in ground contact under varied conditions", J. Theor. Appl. Mech., 47, 3-17. https://doi.org/10.1515/jtam-2017-0001.
  26. Kim, B.S., Chi, C.H. and Lee, T.K. (2007), "A study on radial directional natural frequency and damping ratio in a vehicle tire", Appl. Acoust., 68, 538-556. https://doi.org/10.1016/j.apacoust.2006.07.009.
  27. Kumar, A., Mahajan, P., Mohan, D. and Varghese, M. (2001), "Tractor vibration severity and driver health: a study from rural India", J. Agric. Eng. Res., 80(4), 313-328. https://doi.org/10.1006/jaer.2001.0755
  28. Lines, J.A and Murphy, K. (1992), "The stiffness of agricultural tractor tyres", J. Terrramech., 28(1), 49-64. https://doi.org/10.1016/0022-4898(91)90006-R.
  29. Lines, J.A. and Young, N.A. (1989), "A machine for measuring the suspension characteristics of agricultural tires", J. Terramech., 26, 201-210. https://doi.org/10.1016/0022-4898(89)90036-0.
  30. Matsumoto, Y. and Griffin, M.J. (2001), "Modelling the dynamic mechanisms associated with the principal resonance of the seated human body", Clin Biomech., 16, s31-44. https://doi.org/10.1016/S0268-0033(00)00099-1.
  31. Negrus, E., Anghelache, G. and Stanescu, A. (1997), "Finite element analysis and experimental analysis of natural frequencies and mode shapes for a non - rotating tyre", Veh. Syst. Dyn. Suppl., 27, 221-224. https://doi.org/10.1080/00423119708969656.
  32. Nguyen, V.N. and Inaba, S. (2011), "Effects of tire inflation pressure and tractor velocity on dynamic wheel load and rear axle vibrations", J. Terramech., 48, 3-16. https://doi.org/10.1016/j.jterra.2010.09.001.
  33. Pavlov, N., Sokolov, E., Dodov, M. and Stoyanov, S. (2017), "Study of the wheel loader vibration with a developed multibody dynamic model", MATEC Web of Conferences, 133, 02007, 1-4. https://doi.org/10.1051/matecconf/201713302007.
  34. Pieters, R.S. (2007), "Experimental modal analysis of an automobile tire under static load", DCT Rapporten, Technische Universiteit Eindhoven, Eindhoven.
  35. Piotr, S. (2006), "Modeling the flexibility of pneumatic tired wheels moving on the soil surface", Tech. Sci., 9, 111-118.
  36. Prasad, N., Tewari, V.K. and Yadav, R. (1995), "Tractor ride vibration-A review", J. Terramech., 32(4), 205-219. https://doi.org/10.1016/0022-4898(95)00017-8.
  37. Prathap Kumar, M.T., Ramesh, H.N., Raghavebdra Rao, M.V. and Asha, M. (2010), "A comparative study on damping of finite dry and saturated sand stratum under vertical vibrations", Geomech. Eng., 2(1), 29-44. https://doi.org/10.12989/gae.2010.2.1.029.
  38. Rubinstein, D. and Galili, N. (1994), "REKEM-A design-oriented simulation program for off-road track vehicle", J. Terramech., 31(5), 329-352. https://doi.org/10.1016/0022-4898(94)90005-1.
  39. Sherwin, L.M., Owende, P.M.O., Kanali, C.L., Lyons, J. and Ward, S.M. (2004), "Influence of tyre inflation pressure on whole-body vibrations transmitted to the operator in a cut-to-length timber harvester", Appl. Ergon., 35, 253-261. https://doi.org/10.1016/j.apergo.2004.02.002.
  40. Taylor, R.K., Bashford, L.L. and Schrock, M.D. (2000), "Methods for measuring vertical tire stiffness", Am. Soc. Agric. Eng., 43(6), 1415-1419. https://doi.org/10.13031/2013.3039.
  41. Tian, N.X., Lixin, S. and Hao, G. (2011), "Research on the radial stiffness and damping of tractor coefficient tires through test", J. Nanjing Agric. Uni., 34, 139-143. https://doi.org/10.7685/j.issn.1000-2030.2011.05.025.
  42. Villibor, G.P., Santos, F.L., de Queiroz, D.M. and Guedes, D.M. (2014), "Vibration levels on rear and front axles of a tractor in agricultural operations", Acta Scientiarum Technology Maringa, 36(1), 7-14. https://doi.org/10.4025/actascitechnol.v36i1.18170.
  43. Xu, G., Zhu, S., Nie, X., He, L. and Li, K. (2014), "Natural frequencies calculation for vibrating systems of tractors made in China", J. Vib. Shock, 33(15), 157-161. http://doi.org/10.13465/j.cnki.jvs.2014.15.027.
  44. Yong, R.N., Boonsinsuk, P. and Fattah, E.A. (1980), "Tire load capacity and energy loss with respect to varying soil support stiffness", J. Terramech., 17(3), 131-147. https://doi.org/10.1016/0022-4898(80)90023-3.
  45. Zheng, E., Cui, S., Yang, Y., Xue, J., Zhu, Y. and Lin, X. (2019), "Simulation of the vibration characteristics for agricultural wheeled tractor with implement and front axle hydropneumatic suspension", Shock Vib., 1, 1-19. https://doi.org/10.1155/2019/9135412.

Cited by

  1. Investigation of Vehicle Stability with Consideration of Suspension Performance vol.11, pp.20, 2020, https://doi.org/10.3390/app11209778