References
- Barnes, S.J. and Roeder, P.L., 2001, The range of spinel composition in terrestrial mafic and ultramafic rocks. Journal of Petrology, 42, 2279-2302. https://doi.org/10.1093/petrology/42.12.2279
- Barton, P.B. and Toulmin, P., 1966, Phase relations involving sphalerite in the Fe-Zn-S system. Economic Geology, 61, 815-849. https://doi.org/10.2113/gsecongeo.61.5.815
- Bowman, J.R., 1998, Stable-isotope systematic of skarns. In Mineralized intrusion-related skarn systems (eds. Lentz, D.R.), Mineralogical Association of Canada, 99-145.
- Canet, C., Gonzalez-Partida, E., Camprubi, A., Castro-Mora, J., Romero, F.M., Prol-Ledesma, R.M., Linares, C., Romero-Guadarrama, J.A. and Sanchez-Vargas, L.I., 2011, The Zn-Pb-Ag skarns of Zacatepec, northeastern Oaxaca, Mexico: A study of mineral assemblages and ore-forming fluids. Ore Geology Reviews, 39, 277-290. https://doi.org/10.1016/j.oregeorev.2011.03.007
- Choi, B.K., Choi, S.G., Seo, J.E., Yoo, I.K., Kang, H.S. and Koo, M.H., 2010, Mineralogical and geochemical characteristics of the Wolgok-Seongok orebodies in the Gagok skarn deposit: their genetic implications. Economic and Environmental Geology, 43, 477-490.
- Choi, J., Shin, D. and Im, H., 2018, Regional variations of sulfur isotope compositions for metallic deposits in the Taebaeksan Mineralized District, South Korea. Geosciences Journal, 22, 79-89. https://doi.org/10.1007/s12303-017-0057-x
- Choi, S.G., 1993, Compositional variations of sphalerites and their genetic characteristics from gold and/or silver deposits in central Korea. Journal of the Korea Institute of Mining Geology, 26, 135-144.
- Choi, S.G., Choi, B.K., Ahn, Y.H. and Kim, T.H., 2009, Reevalution of genetic environments of zinc-lead deposits to predict hidden skarn orebody. Economic and Environmental Geology, 42, 301-314.
- Chon, H.T., 1982, Compositional variation of sphalerite and its genetical implications to metallic ore deposits in Korea. Journal of the Korea Institute of Mining Geology, 19, 191-198.
- Chon, H.T. and Shimazaki, H., 1986, Iron, manganese and cadmium contents of sphalerites and their genetical implications to hydrothermal metallic ore deposits in Korea. Journal of the Korea Institute of Mining Geology, 19, 139-149.
- Chon, H.T., Shimazaki, H. and Sato, K., 1981, Compositional variation of sphalerites from some hydrothermal metallic ore deposits in the Republic of Korea. Mining Geology, 31, 337-343.
- Chough, S.K., Kwon, S.T., Ree, J.H. and Choi, D.K., 2000, Tectonic and sedimentary evolution of the Korean peninsula: a review and new view. Earth-Science Reviews, 52, 175-235. https://doi.org/10.1016/S0012-8252(00)00029-5
- Cook, N.J., Ciobanu, C.L., Pring, A., Skinner, W., Shimizu, M., Danyushevsky, L., Saini-Eidukat, B. and Melcher, F., 2009, Trace and minor elements in sphalerite: A LAICPMS study. Geochimica et Cosmochimica Acta, 73, 4761-4791. https://doi.org/10.1016/j.gca.2009.05.045
- Dare, S.A., Barnes, S.J., Beaudoin, G., Meric, J., Boutroy, E. and Potvin-Doucet, C., 2014, Trace elements in magnetite as petrogenetic indicators. Mineralium Deposita, 49, 785-796. https://doi.org/10.1007/s00126-014-0529-0
- Einaudi, M.T. and Burt, D.M., 1982, A special issue devoted to skarn depoists: Introduction-terminology, classification, and composition of skarn deposits. Economic Geology, 77, 745-754. https://doi.org/10.2113/gsecongeo.77.4.745
- Hong, Y.K., 1986, Geochemistry and K-Ar age of the Imog granite at the southwestern part of the Hambaeg basin, Korea. Economic and Environmental Geology, 19, 97-107.
- Im, H., Jeong, J.Y. and Shin, D., 2020, Genetic environment of W skarn and Pb-Zn vein mineralization associated with the Imog granite in the Taebaeksan Mineralized District, South Korea. Ore Geology Reviews, DOI: 103721.
- Im, H., Shin, D., Jeong, J.Y. and Lee, M., 2018, Spatio-temporal variation of polymetallic mineralization in the Wooseok deposit. Economic and Environmental Geology, 51, 493-507. https://doi.org/10.9719/EEG.2018.51.6.493
- Ishihara, S., Jin, M.S. and Kajiwara, Y., 2002, Sulfur content and isotopic ratio of Cambro-Ordovician carbonate rocks from South Korea: a possible source for Mesozoic magmatic-hydrothermal ore sulfur. Resource Geology, 52, 41-48. https://doi.org/10.1111/j.1751-3928.2002.tb00115.x
- Jamtveit, B., 1991, Oscillatory zonation patterns in hydrothermal grossular andradite garnet, nonlinear dynamics in regions of immiscibility. American Mineralogist, 76, 1319-1327.
- Jeong, J,Y., 2018, Geology and skarn mineralization chracteristics in Nokjeonri area Yeongwol. Master's Thesis, Kongju National University, 60p.
-
Jugo, P.J., Candela, P.A. and Piccoli. P.M., 1999, Magmatic sulfides and Au:Cu ratios in porphyry deposits: an experimental study of copper and gold partitioning at
$850\;^{\circ}C$ , 100 MPa in a haplogranitic melt-pyrrhotite-intermediate solid solution-gold metal assemblage, at gas saturation. Lithos, 46, 573-589. https://doi.org/10.1016/S0024-4937(98)00083-8 - Kim, E.J., Park, M.E. and White, N.C., 2012, Skarn gold mineralization at the Geodo mine, South Korea. Economic Geology, 107, 537-551. https://doi.org/10.2113/econgeo.107.3.537
- Kim, O.J., 1971, Study on the intrusion epochs of younger granites and their bearing to orogenesis in South Korea. Journal of the Korea Institute of Mining Geology, 4, 1-9.
- KORES, 2014, Detailed geological survey report (Pb-Zn: Yemi area), 112p.
- Kwak, T.A.P., 2012, W-Sn skarn deposits: and related metamorphic skarns and granitoids. Elsevier, 24, 451p.
- Lee, C.H., Lee, H.K. and Kim S.J., 1998, Geochemistry and mineralization age of magnesian skarn-type iron deposits of the Janngun mine, Republic of Korea. mineralium deposita, 33, 379-390. https://doi.org/10.1007/s001260050156
- Lee, J.H., Yoo, B.C., Yang, Y.S., Lee, T.H. and Seo, J.H., 2019, Sphalerite geochemistry of the Zn-Pb orebodies in the Taebaeksan metallogenic province, Korea. Ore Geology Reviews. 107, 1046-1067. https://doi.org/10.1016/j.oregeorev.2019.03.030
- Lee, J.Y., Lee, I.H. and Hwang, D.H., 1996, Chemical composition of the Cretaceous granitoids and related ore deposits in the Taebaegsan Basin, Korea. Economic and Environmental Geology, 29, 247-256.
- Lee, M.S., Chang, H.W. and Lee, Y.J., 1990, Geochemical characteristics of the Imog granite. Journal of Geological Society of Korea, 26, 82-90.
-
Lusk, J., Scott, S.D. and Ford, C.E., 1993, Phase relations in the Fe-ZnS system to 5 Kbars and temperatures between 325 and
$150\;^{\circ}C$ . Economic Geology, 88, 1880-1903. https://doi.org/10.2113/gsecongeo.88.7.1880 -
Martin, J.D. and Gil, A.S.I., 2005, An integrated thermodynamic mixing model for sphalerite geobarometry from 300 to
$850\;^{\circ}C$ and up to 1GPa. Geochimica et Cosmochimica Acta, 69, 995-1006. https://doi.org/10.1016/j.gca.2004.08.009 - Meinert, L.D., 1992, Skarn and skarn deposits. Geoscience Canada, 19, 145-162.
- Meinert, L.D., 1997, Application of skarn deposit zonation models to mineral exploration. Exploration and Mining Geology, 6, 185-208. https://doi.org/10.1016/S0964-1823(98)00003-8
- Meinert, L.D., Dipple, G.M. and Nicolescu, S., 2005, World skarn deposits. Economic Geology. 100th anniversary volume, 299-336.
- Mizuta, T., Shimazaki, H., Kaneda, H. and Lee, M.S., 1984, Compositional variation of sphalerites from some Au-Ag ore deposits in South Korea. In Granitic province and associated ore deposits in South Korea (eds. Tsusue, A.), 127-152.
- Nadoll, P., Angerer, T., Mauk, J. L., French, D. and Walshe, J., 2014, The chemistry of hydrothermal magnetite: a review. Ore Geology Reviews, 61, 1-32. https://doi.org/10.1016/j.oregeorev.2013.12.013
- Ohmoto, H. and Lasaga, A.C., 1982, Kinetics of reactions between aqueous sulfates and sulfides in hydrothermal systems. Geochimica et Cosmochimica Acta, 46, 1727-1745. https://doi.org/10.1016/0016-7037(82)90113-2
- Ohmoto, H. and Rye, R.O., 1979, Isotopes of sulfur and carbon. In Geochemistry of hydrothermal ore deposits (eds. Barnes, H.L.), John Wiley and Sons, 509-567.
- Palero-Fernandez, F.J. and Martin-Izard, A., 2005, Trace element contents in galena and sphalerite from ore deposits of the Alcudia valley mineral field (Eastern Sierra Morena, Spain). Journal of Geochemical Exploration, 86, 1-25. https://doi.org/10.1016/j.gexplo.2005.03.001
- Pandit, D., 2015, Thermodynamic model for hydrothermal sulfide deposition in the paleoproterozoic granite ore system at Malanjkhand, Indian. Indian Journal of Geo-Marine Sciences, 44, 1697-1711.
- Parat, F., Holtz, F. and Streck, M.J., 2011, Sulfur-bearing magmatic accessory minerals. Reviews in Mineralogy and Geochemistry, 73, 285-314. https://doi.org/10.2138/rmg.2011.73.10
- Qiu, Z.J., Fan, H.R., Liu, X., Yang, K.F., Hu, F.F. and Cai, Y.C., 2017, Metamorphic P-T-t evolution of Paleoproterozoic schist-hosted Cu deposits in the Zhongtiao mountains, North China Craton: Retrograde ore formation during sluggish exhumation. Precambrian Research, 300, 59-77. https://doi.org/10.1016/j.precamres.2017.08.014
- Reguir, E.P., Chakhmouradian, A.R., Halden, N.M. and Yang, P., 2008, Early magmatic and reaction- induced trends in magnetite from the carbonatites of Kerimasi, Tanzania. The Canadian Mineralogist, 46, 879-900. https://doi.org/10.3749/canmin.46.4.879
- Righter, K., Leeman, W.P. and Hervig, R.L., 2006, Partitioning of Ni, Co and V between spinel-structured oxides and silicate melts: Importance of spinel composition. Chemical Geology, 227, 1-25. https://doi.org/10.1016/j.chemgeo.2005.05.011
- Ryabchikov, I.D. and Kogarko, L.N., 2006, Magnetite compositions and oxygen fugacities of the Khibina magmatic system. Lithos, 91, 35-45. https://doi.org/10.1016/j.lithos.2006.03.007
- Scott, S.D. and Barnes, H.L., 1971, Sphalerite geothermometry and geobarometry. Economic Geology, 66, 653-669. https://doi.org/10.2113/gsecongeo.66.4.653
- Seal, II, R.R., 2006, Sulfur isotope geochemistry of sulfide minerals. In Sulfide mineralogy and geochemistry (eds. Vaughan, D.J.), Reviews in Mineralogy and Geochemistry, 61, 633-677. https://doi.org/10.2138/rmg.2006.61.12
-
Seo, J.H., Yoo, B.C., Villa, I.M., Lee, J.H., Lee, T., Kim, C. and Moon, K.J., 2017, Magmatic-hydrothermal processes in Sangdong W-Mo deposit, Korea: Study of fluid inclusions and
$^{39}Ar-^{40}Ar$ geochronology. Ore Geology Reviews, 91, 316-334. https://doi.org/10.1016/j.oregeorev.2017.09.019 - Shibue, Y., 1988, High cadmium contents of sphalerites from major tungsten deposits in Japan. Mineralogical Journal, 4, 115-125. https://doi.org/10.2465/minerj.14.115
- Simon, A.C. and Ripley, E.M., 2011, The role of magmatic sulfur in the formation of ore deposits. Reviews in Mineralogy and Geochemistry, 73, 513-578. https://doi.org/10.2138/rmg.2011.73.16
- Sui, J.X., Li, J.W., Wen, G. and Jin, X.Y., 2017, The Dewulu reduced Au-Cu skarn deposit in the Xiahe Hezuo district, West Qinling orogen, China: Implications for an intrusion-related gold system. Ore Geology Reviews, 80, 1230-1244. https://doi.org/10.1016/j.oregeorev.2016.09.018
- Yang, D.Y., 1991, Mineralogy, petrology and geochemistry of the magnesian skarn-type magnetite deposits at the Shinyemi mine, Republic of Korea. Ph.D. dissertation, Waseda University, 323p.
- Yang, D.Y., Morioka, Y. and Mariko, T., 1990, Magnetite and spinel series minerals from the magnesian skarn-type iron deposit at the Shinyemi mine, Korea. Mining Geology, 40, 183-194.
- Yeom, T. and Shin, D., 2015, Ore minerals and genetic environments of the Seungryung Zn deposit, Muzu, Korea. Economic and Environmental Geology, 48, 1-13. https://doi.org/10.9719/EEG.2015.48.1.1
- Yun, H.S., 1986, Petrochemical study on the Cretaceous granitic rocks in the southern area of Hambaeg Basin. Economic and Environmental Geology, 19, 175-191.
- Zaw, K. and Singoyi, B., 2000, Formation of magnetitescheelite skarn mineralization at Kara, northwestern Tasmania: Evidence from mineral chemistry and stable isotopes. Economic Geology, 95, 1215-1230. https://doi.org/10.2113/gsecongeo.95.6.1215
- Zhou, J., Huang, Z., Zhou, M., Li, X. and Jin, Z., 2013, Constraints of C-O-S-Pb isotope compositions and Rb-Sr isotopic age on the origin of the Tianqiao carbonatehosted Pb-Zn deposit, SW China. Ore Geology Reviews, 53, 77-92. https://doi.org/10.1016/j.oregeorev.2013.01.001
- Zuo, P., Liu, X., Hao, J., Wang, Y., Zhao, R. and Ge, S., 2015, Chemical compositions of garnet and clinopyroxene and their genetic significances in Yemaquan skarn ironcopper-zinc deposit, Qimantagh, eastern Kunlun. Journal of Geochemical Exploration, 158, 143-154. https://doi.org/10.1016/j.gexplo.2015.07.011