DOI QR코드

DOI QR Code

Evaluation of Structural and Functional Changes of Ecological Networks by Land Use Change in a Wetlandscape

토지이용변화에 따른 거시적 습지경관에서의 생태네트워크의 구조 및 기능적 변화 평가

  • Kim, Bin (Department of Civil Engineering, Hongik University) ;
  • Park, Jeryang (Department of Civil Engineering, Hongik University)
  • 김빈 (홍익대학교 토목공학과) ;
  • 박제량 (홍익대학교 토목공학과)
  • Received : 2020.09.15
  • Accepted : 2020.09.28
  • Published : 2020.09.30

Abstract

Wetlands, which provide various ecological services, have been regarded as an important nature-based solution for, for example, sustainable water quality improvement and buffering of impacts from climate change. Although the importance of conserving wetlands to reduce the impacts of various perturbations (e.g., changes of land use, climate, and hydrology) has been acknowledged, the possibility of applying these efforts as a nature-based solution in a macro-scale (e.g., landscape) has been insufficient. In this study, we examine the possibility of ecological network analysis that provides an engineering solution as a nature-based solution. Specifically, we analyzed how land use change affects the structural and functional characteristics (connectivity, network efficiency, and clustering coefficient) of the ecological networks by using the ecological networks generated by multiple dispersal models of the hypothetical inhabiting species in wetlandscape. Changes in ecological network characteristics were analyzed through simultaneously removing wetlands, with two initial conditions for surface area, in the zones where land use change occurs. We set a total number of four zones of land use change with different wetland densities. All analyses showed that mean degree and network efficiency were significantly reduced when wetlands in the zones with high wetland density were removed, and this phenomenon was intensified especially when zones contained hubs (nodes with high degree). On the other hand, we observed the clustering coefficient to increase. We suggest our approach for assessing the impacts of land use change on ecological networks, and with additional analysis on betweenness centrality, we expect it can provide a nature-based engineering solution for creating alternative wetlands.

다양한 생태계 서비스를 제공할 수 있는 습지는 지속가능한 수질 개선 및 기후변화로 인한 영향의 완충작용 등 중요한 자연기반해법기술로 간주되어 왔다. 특히 토지이용 변화, 기후 변화 및 수문 변화에 따른 영향 저감을 위한 습지 보전의 중요성은 부각되었으나 경관규모에서의 거시적 자연기반해법기술 가능성의 검토가 미비하였다. 이에 본 연구에서는 생태 네트워크 분석을 통한 공학적 솔루션 제공 가능성을 검토하기 위해 습지경관 가상 서식종의 이동모델을 기반으로 형성된 습지 생태네트워크를 이용하여 토지이용변화에 따른 생태네트워크의 구조적, 기능적 특성 (연결성, 이동 효율성 및 집단화 계수)이 어떻게 변화하는지 분석하였다. 이를 위해 습지 밀도가 다른 네 구역의 토지이용변화를 가정하여 두 가지의 초기 면적조건에 대한 각 구역의 동시다발적 토지이용변화를 통해 생태 네트워크 특성의 변화를 분석하였다. 모든 분석결과에서 습지밀도가 높은 구역이 파괴된 경우 생태네트워크의 평균 연결성과 이동 효율성이 크게 감소하였으며, 특히 허브 (매우 높은 연결성을 지니는 노드)가 포함된 구역의 습지가 제거될 때 급격한 감소가 발생하는 것을 확인하였다. 반면, 집단화 계수는 증가하는 것으로 관찰되었다. 이를 통해 토지이용변화에 따른 생태네트워크에 대한 영향을 평가할 수 있으며 특히 향후 매개중심성 분석을 추가하여 적합한 대체습지를 조성할 수 있는 자연기반의 공학적 솔루션을 제공할 수 있을 것으로 사료된다.

Keywords

References

  1. Amezaga, J.M., Santamaria, L., and Green, A.J. 2002. Biotic wetland connectivity-supporting a new approach for wetland policy. Acta Oecologica 23(3): 213-222. https://doi.org/10.1016/S1146-609X(02)01152-9
  2. Bartumeus, F. 2007. Levy processes in animal movement: an evolutionary hypothesis. Fractals 15(02): 151-162. https://doi.org/10.1142/S0218348X07003460
  3. Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.-U. 2006. Complex networks: structure and dynamics. Physics Reports 424(4-5): 175-308. https://doi.org/10.1016/j.physrep.2005.10.009
  4. Bunn, A.G., Urban, D.L., and Keitt, T.H. 2000. Landscape connectivity: a conservation application of graph theory. Journal of Environmental Management 59(4): 265-278. https://doi.org/10.1006/jema.2000.0373
  5. Cui, B., Zhang, Z., and Lei, X. 2012. Implementation of diversified ecological networks to strengthen wetland conservation. Clean-Soil, Air, Water 40(10): 1015-1026. https://doi.org/10.1002/clen.201200026
  6. Eggermont, H., Balian, E., Azevedo, J.M.N., Beumer, V., Brodin, T., Claudet, J., Fady, B., Grube, M., Keune, H., Lamarque, P., Reuter, K., Smith, M., Van Ham, C., Weisser, W.W., and Le Roux, X. 2015. Nature-based solutions: new influence for environmental management and research in Europe. GAIA-Ecological Perspectives for Science and Society 24(4): 243-248. https://doi.org/10.14512/gaia.24.4.9
  7. Fletcher, R.J., Acevedo, M.A., Reichert, B.E., Pias, K.E., and Kitchens, W.M. 2011. Social network models predict movement and connectivity in ecological landscapes. Proceedings of the National Academy of Sciences 108(48): 19282-19287. https://doi.org/10.1073/pnas.1107549108
  8. Irwin, M.D. and Hughes, H.L. 1992. Centrality and the structure of urban interaction: measures, concepts, and applications. Social Forces 71(1): 17-51. https://doi.org/10.2307/2579964
  9. Johnston, C.A. and McIntyre, N.E. 2019. Effects of cropland encroachment on prairie pothole wetlands: numbers, density, size, shape, and structural connectivity. Landscape Ecology 34(4): 827-841. https://doi.org/10.1007/s10980-019-00806-x
  10. Jordan, F., Okey, T.A., Bauer, B., and Libralato, S. 2008. Identifying important species: linking structure and function in ecological networks. Ecological Modelling 216(1): 75-80. https://doi.org/10.1016/j.ecolmodel.2008.04.009
  11. Kim, B. and Park, J. 2020. Random ecological networks that depend on ephemeral wetland complexes. Ecological Engineering, 156: 105972. https://doi.org/10.1016/j.ecoleng.2020.105972
  12. Kim, Bin and Park, J. 2019. Characterization of ecological networks on wetland complexes by dispersal models. Journal of Wetlands Research 21(1): 16-26. https://doi.org/10.17663/JWR.2019.21.1.016
  13. Latora, V. and Marchiori, M. 2007. A measure of centrality based on network efficiency. New Journal of Physics 9(6): 188. https://doi.org/10.1088/1367-2630/9/6/188
  14. Luo, Y., Melillo, J., Niu, S., Beier, C., Clark, J.S., Classen, A.T., Davidson, E., Dukes, J.S., Evans, R.D., Field, C.B., Czimczik, C.I., Keller, M., Kimball, B.A., Kueppers, L.M., Norby, R.J., Pelini, S.L., Pendall, E., Rastetter, E., Six, J., Smith, M., Tjoelker, M.G., and Torn, M.S. 2011. Coordinated approaches to quantify long-term ecosystem dynamics in response to global change. Global Change Biology 17(2): 843-854. https://doi.org/10.1111/j.1365-2486.2010.02265.x
  15. McIntyre, N.E. and Strauss, R.E. 2013. A new, multi-scaled graph visualization approach: an example within the playa wetland network of the Great Plains. Landscape Ecology 28(4): 769-782. https://doi.org/10.1007/s10980-013-9862-4
  16. Minor, E.S. and Urban, D.L. 2008. A graph-theory framework for evaluating landscape connectivity and conservation planning. Conservation Biology 22(2): 297-307. https://doi.org/10.1111/j.1523-1739.2007.00871.x
  17. Newman, M.E.J. 2003. The structure and function of complex networks. SIAM Review 45(2): 167-256. https://doi.org/10.1137/S003614450342480
  18. O'Farrill, G., Schampaert, K.G., Rayfield, B., Bodin, O., Calme, S., Sengupta, R., and Gonzalez, A. 2014. The potential connectivity of waterhole networks and the effectiveness of a protected area under various drought scenarios. PLoS ONE 9(5): e95049. https://doi.org/10.1371/journal.pone.0095049
  19. Pastor-Satorras, R. and Vespignani, A. 2001. Epidemic dynamics and endemic states in complex networks. Physical Review E 63(6): 66117. https://doi.org/10.1103/PhysRevE.63.066117
  20. Pereira, M., Segurado, P., and Neves, N. 2011. Using spatial network structure in landscape management and planning: a case study with pond turtles. Landscape and Urban Planning 100(1-2): 67-76. https://doi.org/10.1016/j.landurbplan.2010.11.009
  21. Peterson, G.D. 2002. Estimating resilience across landscapes. Conservation Ecology 6(1).
  22. Phillips, J.D., Schwanghart, W., and Heckmann, T. 2015. Graph theory in the geosciences. Earth-Science Reviews 143: 147-160. https://doi.org/10.1016/j.earscirev.2015.02.002
  23. Preisser, E.L., Kefer, J.Y., Lawrence, J.D., and Clark, T.W. 2000. Vernal pool conservation in Connecticut: An assessment and recommendations. Environmental Management 26(5): 503-513. https://doi.org/10.1007/s002670010108
  24. Reitsma, K.D., Clay, D.E., Carlson, C.G., Dunn, B.H., Smart, A.J., Wright, D.L., and Clay, S.A. 2014. Estimated South Dakota land use change from 2006 to 2012. IGrow Agronomy.
  25. Reynolds, A.M. and Rhodes, C.J. 2009. The Levy flight paradigm: random search patterns and mechanisms. Ecology 90(4): 877-887. https://doi.org/10.1890/08-0153.1
  26. Rho, P. 2013. Development for wetland network model in Nakdong basin using a graph theory. 15(3): 397-406. https://doi.org/10.17663/JWR.2013.15.3.397
  27. Schick, R.S., Loarie, S.R., Colchero, F., Best, B.D., Boustany, A., Conde, D.A., Halpin, P.N., Joppa, L.N., McClellan, C.M., and Clark, J.S. 2008. Understanding movement data and movement processes: current and emerging directions. Ecology Letters 11(12): 1338-1350. https://doi.org/10.1111/j.1461-0248.2008.01249.x
  28. Smith, M.A. and Green, D.M. 2005. Dispersal and the metapopulation in amphibian and paradigm ecology are all amphibian conservation: populations metapopulations? Ecography 28(1): 110-128. https://doi.org/10.1111/j.0906-7590.2005.04042.x
  29. Steffen, W., Richardson, K., Rockstrom, J., Cornell, S.E., Fetzer, I., Bennett, E.M., Biggs, R., Carpenter, S.R., De Vries, W., De Wit, C.A., Folke, C., Gerten, D., Heinke, J., Mace, G.M., Persson, L.M., Ramanathan, V., Reyers, B., and Sorlin, S. 2015. Planetary boundaries: Guiding human development on a changing planet. Science 347(6223).
  30. Thorslund, J., Jarsjo, J., Jaramillo, F., Jawitz, J.W., Manzoni, S., Basu, N.B., Chalov, S.R., Cohen, M.J., Creed, I.F., Goldenberg, R., Hylin, A., Kalantari, Z., Koussis, A.D., Lyon, S.W., Mazi, K., Mard, J., Persson, K., Pietro, J., Prieto, C., Quin, A., Van Meter, K., and Destouni, G. 2017. Wetlands as large-scale nature-based solutions: Status and challenges for research, engineering and management. Ecological Engineering 108, 489-497. https://doi.org/10.1016/j.ecoleng.2017.07.012
  31. Uden, D.R., Hellman, M.L., Angeler, D.G., and Allen, C.R. 2014. The role of reserves and anthropogenic habitats for functional connectivity and resilience of ephemeral wetlands. Ecological Applications 24(7): 1569-1582. https://doi.org/10.1890/13-1755.1
  32. Urban, D. and Keitt, T. 2001. Landscape connectivity: a graph-theoretic perspective. Ecology 82(5): 1205-1218. https://doi.org/10.1890/0012-9658(2001)082[1205:LCAGTP]2.0.CO;2
  33. Watts, D.J. and Strogatz, S.H. 1998. Collective dynamics of 'small-world'networks. Nature 393(6684): 440-442. https://doi.org/10.1038/30918
  34. Wright, C.K. 2010. Spatiotemporal dynamics of prairie wetland networks: power-law scaling and implications for conservation planning. Ecology 91(7): 1924-1930. https://doi.org/10.1890/09-0865.1
  35. Zedler, J.B. 2000. Progress in wetland restoration ecology. Trends in Ecology & Evolution 15(10): 402-407. https://doi.org/10.1016/S0169-5347(00)01959-5