DOI QR코드

DOI QR Code

Anti-adipogenic Pregnane Steroid from a Hydractinia-associated Fungus, Cladosporium sphaerospermum SW67

  • Lee, Seoung Rak (School of Pharmacy, Sungkyunkwan University) ;
  • Kang, Heesun (School of Pharmacy, Sungkyunkwan University) ;
  • Yoo, Min Jeong (School of Pharmacy, Sungkyunkwan University) ;
  • Yu, Jae Sik (School of Pharmacy, Sungkyunkwan University) ;
  • Lee, Seulah (School of Pharmacy, Sungkyunkwan University) ;
  • Yi, Sang Ah (School of Pharmacy, Sungkyunkwan University) ;
  • Beemelmanns, Christine (Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoll Institute) ;
  • Lee, Jaecheol (School of Pharmacy, Sungkyunkwan University) ;
  • Kim, Ki Hyun (School of Pharmacy, Sungkyunkwan University)
  • Received : 2020.07.13
  • Accepted : 2020.09.02
  • Published : 2020.09.30

Abstract

A pregnane steroid, 3α-hydroxy-pregn-7-ene-6,20-dione (1), was isolated from a Hydractinia-associated Cladosporium sphaerospermum SW67 by repetitive column chromatographic separation and high-performance liquid chromatography (HPLC) purification. The planar structure of 1 was elucidated from the analysis of the spectroscopic data (1D and 2D NMR spectra) and LC-MS data. The absolute configuration of 1 was determined by interpretation of ROESY spectrum of 1, together with the comparison of reported spectroscopic values in previous studies. To the best of our knowledge, this is the first report of the identification of the pregnane scaffold from C. sphaerospermum, a natural source. Compound 1 was evaluated for its effects on lipid metabolism and adipogenesis during adipocyte maturation and showed that compound 1 substantially inhibited lipid accumulation compared to the control. Consistently, the expression of the adipocyte marker gene (Adipsin) was reduced upon incubation with 1. Further, we evaluated the effects of 1 on lipid metabolism by measuring the transcription of lipolytic and lipogenic genes. The expression of the lipolytic gene ATGL was significantly elevated upon exposure to 1 during adipogenesis, whereas the expression of lipogenic genes FASN and SREBP1 was significantly reduced upon treatment with 1. Thus, our findings provide experimental evidence that the steroid derived from Hydractinia-associated C. sphaerospermum SW67 is a potential therapeutic agent for obesity.

Keywords

References

  1. Bode, H. B. Angew. Chem. Int. Ed. Engl. 2009, 48, 6394-6396. https://doi.org/10.1002/anie.200902152
  2. Douglas, A. E. Cell Host Microbe 2011, 10, 359-367. https://doi.org/10.1016/j.chom.2011.09.001
  3. Kuhlisch, C.; Pohnert, G. Nat. Prod. Rep. 2015, 32, 937-955. https://doi.org/10.1039/C5NP00003C
  4. Kroiss, J.; Kaltenpoth, M.; Schneider, B.; Schwinger, M. G.; Hertweck, C.; Maddula, R. K.; Strohm, E.; Svatos, A. Nat. Chem. Biol. 2010, 6, 261-263. https://doi.org/10.1038/nchembio.331
  5. Lee, D. S.; Ko, W.; Quang, T. H.; Kim, K. S.; Sohn, J. H.; Jang, J. H.; Ahn, J. S.; Kim, Y. C.; Oh, H. Mar. Drugs 2013, 11, 4510-4526. https://doi.org/10.3390/md11114510
  6. Um, S.; Fraimout, A.; Sapountzis, P.; Oh, D.C.; Poulsen, M. Sci. Rep. 2013, 3, 3250. https://doi.org/10.1038/srep03250
  7. Lee, S. R.; Yi, S. A.; Nam, K. H.; Ryoo, R..; Lee, J.; Kim, K. H. J. Nat. Prod. 2019, 82, 3489-3493. https://doi.org/10.1021/acs.jnatprod.9b00782
  8. Lee, S.; Lee, D.; Baek, S. C.; Jo, M. S.; Kang, K. S.; Kim, K. H. Molecules 2019, 24, 3848. https://doi.org/10.3390/molecules24213848
  9. Klassen, J. L.; Lee, S. R.; Poulsen, M.; Beemelmanns, C.; Kim, K. H. Front. Microbiol. 2019, 10, 1739. https://doi.org/10.3389/fmicb.2019.01739
  10. Kim, S.; Yu, J. S.; Lee, J. Y.; Choi, S. U.; Lee, J.; Kim, K. H. J. Nat. Prod. 2019, 82, 765-773. https://doi.org/10.1021/acs.jnatprod.8b00665
  11. Rischer, M.; Lee, S. R.; Eom, H. J.; Park, H. B.; Vollmers, J.; Kaster, A. K.; Shin, Y. H.; Oh, D. C.; Kim, K. H.; Beemelmanns, C. Org. Chem. Front. 2019, 6, 1084-1093. https://doi.org/10.1039/C8QO01104D
  12. Lee, S. R.; Lee. D.; Eom, H. J.; Rischer, M.; Ko, Y. J.; Kang, K. S.; Kim, C. S.; Beemelmanns, C.; Kim, K. H. Mar. Drugs 2019, 17, 606. https://doi.org/10.3390/md17110606
  13. Yu, M. L.; Guan, F. F.; Cao, F.; Jia, Y. L.; Wang, C. Y. Nat. Prod. Res. 2018, 32, 1260-1266. https://doi.org/10.1080/14786419.2017.1342086
  14. Pang, X.; Lin, X.; Wang, J.; Liang, R.; Tian, Y.; Salendra, L.; Luo, X.; Zhou, X.; Yang, B.; Tu, Z.; Liu, Y. Steroids 2018, 129, 41-46. https://doi.org/10.1016/j.steroids.2017.12.001
  15. Spiegelman, B. M.; Flier, J. S. Cell 2001, 104, 531-543. https://doi.org/10.1016/S0092-8674(01)00240-9
  16. Smith, U.; Kahn, B. B. J. Intern. Med. 2016, 280, 465-475. https://doi.org/10.1111/joim.12540
  17. Poudel, B.; Lim, S. W.; Ki, H. H.; Nepali, S.; Kim, D. K.; Lee, Y. M. Int. J. Mol. Med. 2014, 34, 1401-1408. https://doi.org/10.3892/ijmm.2014.1921
  18. Lee, J. A.; Cho, Y. R.; Hong, S. S.; Ahn, E. K. Phytother. Res. 2017, 31, 1694-1701. https://doi.org/10.1002/ptr.5892

Cited by

  1. Ginkwanghols A and B, osteogenic coumaric acid-aliphatic alcohol hybrids from the leaves of Ginkgo biloba vol.44, pp.5, 2020, https://doi.org/10.1007/s12272-021-01329-3
  2. Bioactive Phytochemicals from Mulberry: Potential Anti-Inflammatory Effects in Lipopolysaccharide-Stimulated RAW 264.7 Macrophages vol.22, pp.15, 2021, https://doi.org/10.3390/ijms22158120