DOI QR코드

DOI QR Code

Characterization and Potent Application of Pleurotus floridanus Trypsin Inhibitor (PfTI)

  • Received : 2020.05.18
  • Accepted : 2020.08.04
  • Published : 2020.09.30

Abstract

Characterization and in vitro inhibition studies of protease inhibitor from the mushroom Pleurotus floridanus (PfTI) towards the pest Papilio demoleus is studied. The addition of 1 mM Mn2+, Na2+, Ba2+ and Ni 2+ enhanced the PfTI activity. The ICP-atomic emission spectrum showed the presence of Ca2+, Mg2+ and Zn2+ in the PfTI. Surfactants SDS and CTAB at a concentration of 1% reduced the PfTI activity whereas, the nonionic detergents Triton X and Tween 80 increased the activity. The inhibitory activity gradually decreased with increase in concentration of DMSO and H2O2. The activity was increased by dithiothreitol up to a concentration of 80 μM and inactivated at 140 μM. The activity of PMSF modified PfTI was drastically reduced to 0.234 U/mL at 4 mM concentration and similar results were obtained for modification of cysteine by N-Ethylmaleimide at slightly higher concentrations. The complex of trypsin and PfTI showed complete loss in fluorescence intensity at 343 nm compared with control. In vitro inhibition studies of PfTI with midgut proteases isolated from citrus pest P. demoleus with protease activity of 1.236 U was decreased to 0.613 U by 50 μL (0.1 mg/mL) of the inhibitor. Inhibitor was stable up to 0.04 M concentration of HCl.

Keywords

References

  1. Zhu-Salzman, K.; Zeng, R. Annu. Rev. Entomol. 2015, 60, 233-252 https://doi.org/10.1146/annurev-ento-010814-020816
  2. Smid, I.; Rotter, A.; Gruden, K.; Brzin, J.; Gasparic, M. B.; Kos, J.; Zel, J.; Sabotic, J. Pestic. Biochem. Physiol. 2015, 122, 59-66. https://doi.org/10.1016/j.pestbp.2014.12.022
  3. Sabotic, J.; Kos, J. Appl. Microbiol. Biotechnol. 2012, 93, 1351-1375. https://doi.org/10.1007/s00253-011-3834-x
  4. Houseman, J. G.; Downe, A. E. R.; Philogene, B. J. R. Can. J. Zool. 1989, 67, 864-868. https://doi.org/10.1139/z89-127
  5. Jamal, F.; Pandey, P. K.; Singh, D.; Khan, M.Y. Phytochem. Rev. 2013, 12, 1-34. https://doi.org/10.1007/s11101-012-9231-y
  6. Macedo, M. L. R.; Durigan, R. A.; Silva, D. S. d.; Marangoni, S.; Freire, M. D. G. M.; Parra, J. R. P. Arch. Insect Biochem. Physiol. 2010, 73, 213-231. https://doi.org/10.1002/arch.20352
  7. Saadati, F.; Bandani, A. R. J. Insect Sci. 2011, 11, 1-12. https://doi.org/10.1673/031.011.7201
  8. Richardson, M.; Campos, F. A. P.; Xavier-Filho, J.; Macedo, M. L. R.; Maia, G. M. C.; Yarwood, A. Biochimica et Biophysica Acta - Protein Structure and Molecular Enzymology 1986, 872, 134-140. https://doi.org/10.1016/0167-4838(86)90156-1
  9. Silva, W. d.; Freire, M. D. G. M.; Parra, J. R. P.; Marangoni, S.; Macedo, M. L. R. Process Biochem. 2012, 47, 257-263. https://doi.org/10.1016/j.procbio.2011.11.002
  10. Smigocki, A. C.; Ivic-Haymes, S.; Li, H.; Savic, J. PLoS One 2013, 8, e57303. https://doi.org/10.1371/journal.pone.0057303
  11. Ali, P. P. M.; Sapna, K.; Mol, K. R. R.; Bhat, S. G.; Chandrasekaran, M.; Elyas, K. K. Appl. Biochem. Biotechnol. 2014, 173, 167-178. https://doi.org/10.1007/s12010-014-0826-1
  12. Kakade, M. L.; Rackis, J. J.; McGhee, J. E.; Puski, G. Cereal Chem. 1974, 51, 376-382.
  13. Losso, J. N.; Munene, C. N.; Bansode, R. R.; Bawadi, H. A. Biotechnol. Lett. 2004, 26, 901-905. https://doi.org/10.1023/B:bile.0000025900.33812.7c
  14. Colman, R. F.; Chu, R. J. Biol. Chem. 1970, 245, 601-607. https://doi.org/10.1016/S0021-9258(18)63374-5
  15. Ovaldi, J.; Libor, S.; Elodi, P. Acta Biochim. Biophys. Acad. Sci. Hung. 1967, 2, 455-458.
  16. Gol7d, A. M.; Fahrney, D. Biochemistry 1964, 3, 783-791. https://doi.org/10.1021/bi00894a009
  17. Spande, T. F.; Witkop, B. Methods Enzymol. 1967, 11, 498-506. https://doi.org/10.1016/S0076-6879(67)11060-4
  18. Bradford, M. Anal. Biochem. 1976, 72, 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  19. Patankar , A. G.; Gir i, A. P.; Har sulkar , A. M.; Sainani, M. N.; Deshpande, V. V. Insect. Biochem Mol. Biol. 2001, 31, 453-464. https://doi.org/10.1016/S0965-1748(00)00150-8
  20. Kuhar, K.; Kansal, R.; Subrahmanyam, B.; Koundal, K. R.; Miglani, K.; Gupta, V. K. Acta Physiol. Plant. 2013, 35, 1887-1903. https://doi.org/10.1007/s11738-013-1227-8
  21. Schirmeister, T.; Peric, M. Bioorg. Med. Chem. 2000, 8, 1281-1291. https://doi.org/10.1016/S0968-0896(00)00058-4
  22. Joshi, B. N.; Sainani, M. N.; Bastawade, K. B.; Deshpande, V. V.; Gupta, V. S.; Ranjekar, P. K. Eur. J. Biochem. 1999, 265, 556-563. https://doi.org/10.1046/j.1432-1327.1999.00764.x
  23. Bijina, B.; Chellappan, S.; Basheer, S. M.; Elyas, K. K.; Bahkali, A. H.; Chandrasekaran, M. Process Biochemistry 2011, 46, 2291-2300. https://doi.org/10.1016/j.procbio.2011.09.008
  24. Mogensen, J. E.; Sehgal, P.; Otzen, D. E. Biochemistry 2005, 44, 1719-1730. https://doi.org/10.1021/bi0479757
  25. Haq, S. K.; Khan, R. H. Int. J. Biol. Macromol. 2005, 36, 47-53. https://doi.org/10.1016/j.ijbiomac.2005.03.008
  26. Johnson, D.; Travis, J. J. Biol. Chem. 1979, 254, 4022-4026. https://doi.org/10.1016/S0021-9258(18)50689-X
  27. Arolas, J. L.; Castillo, V.; Bronsoms, S.; Aviles, F. X.; Ventura, S. J. Mol. Biol. 2009, 392, 529-546. https://doi.org/10.1016/j.jmb.2009.06.049
  28. Macedo, M. L. R.; Freire, M. G. M.; Cabrini, E. C. C.; Toyama, M. H.; Novello, J. C.; Marangoni, S. A. Biochim. Biophys. Acta 2003, 1621, 170-182. https://doi.org/10.1016/S0304-4165(03)00055-2
  29. Lehle, K.; Kohnert, U.; Stern, A.; Popp, F.; Jaenicke, R. Nat. Biotechnol. 1996 14, 476-480. https://doi.org/10.1038/nbt0496-476
  30. Scheidig, A. J.; Hynes, T. R.; Pelletier, L. A.; Wells, J. A.; Kossiakoff, A. A. Protein Sci. 1997, 6, 1806-1824. https://doi.org/10.1002/pro.5560060902
  31. Joshi, B. N.; Sainani, M. N.; Bastawade, K. B.; Deshpande, V. V.; Gupta, V. S.; Ranjekar, P. K. Eur. J. Biochem. 1999, 265, 556-563. https://doi.org/10.1046/j.1432-1327.1999.00764.x
  32. Abe, J.; Sidenius, U.; Svensson, B. Biochem. J. 1993, 293, 151-155. https://doi.org/10.1042/bj2930151
  33. Odani, S.; Tominaga, K.; Kondou, S.; Hori, H.; Koide, T.; Hara, S.; Isemura, M.; Tsunasawa, S. Eur. J. Biochem. 1999, 262, 915-923. https://doi.org/10.1046/j.1432-1327.1999.00463.x
  34. Houseman, J. G.; Downe, A. E. R.; Philogene, B. J. R. Can. J. Zool. 1989, 67, 864-868. https://doi.org/10.1139/z89-127
  35. Badawi, A. Zeitschrift fur Angewandte Entomologie 1981, 91, 286-292. https://doi.org/10.1111/j.1439-0418.1981.tb04481.x
  36. Amirhusin, B.; Shade, R. E.; Koiwa, H.; Hasegawa, P. M.; Bressan, R. A.; Murdock, L. L.; Zhu-Salzman, K. J. Insect Physiol. 2007, 53, 734-740. https://doi.org/10.1016/j.jinsphys.2007.03.008
  37. Mosolov, V. V.; Grigor'eva, L. I.; Valueva, T. A. Appl. Biochem. Microbiol. 2001, 37, 115-123. https://doi.org/10.1023/A:1002824527463
  38. Srinivasan, A.; Giri, A. P.; Harsulkar, A. M.; Gatehouse, J. A.; Gupta, V. S. Plant Mol. Biol. 2005, 57, 359-374. https://doi.org/10.1007/s11103-004-7925-2
  39. Sabotic, J.; Kos, J. Appl. Microbiol. Biotechnol. 2012, 93, 1351-1375. https://doi.org/10.1007/s00253-011-3834-x