DOI QR코드

DOI QR Code

Optimal RNA Extraction Methods and Development of Synthetic Clones for Seven Strawberry Viruses

딸기바이러스 진단을 위한 최적의 RNA 추출 방법 및 주요 7종 딸기바이 러스의 진단법 개발

  • Kwon, Sun-Jung (Horticultural and Herbal Crop Environment Division, National Institute of Horticultural and Herbal Science, Rural Development Administration) ;
  • Yoon, Ju-Yeon (Horticultural and Herbal Crop Environment Division, National Institute of Horticultural and Herbal Science, Rural Development Administration) ;
  • Cho, In-Sook (Horticultural and Herbal Crop Environment Division, National Institute of Horticultural and Herbal Science, Rural Development Administration) ;
  • Chung, Bong-Nam (Horticultural and Herbal Crop Environment Division, National Institute of Horticultural and Herbal Science, Rural Development Administration)
  • 권선정 (국립원예특작과학원 원예특작환경과) ;
  • 윤주연 (국립원예특작과학원 원예특작환경과) ;
  • 조인숙 (국립원예특작과학원 원예특작환경과) ;
  • 정봉남 (국립원예특작과학원 원예특작환경과)
  • Received : 2020.08.13
  • Accepted : 2020.09.12
  • Published : 2020.09.30

Abstract

Most strawberry viruses exist relatively low titers in tissues, and strawberry tissues include high levels of contamination by polysaccharides and phenolic compounds. These traits make the efficiency of strawberry diagnosis difficult. In this study, we tested different commercially available kits and reagents to secure optimal RNA extraction methods to determine virus detection from strawberry leaves. Total RNA was isolated from leaves of strawberry mottle virus (SMoV)-infected strawberry cultivar 'Mihong'. The efficiency of total RNA for virus diagnosis was confirmed through SMoV detection by one-step or two-step reverse transcription and polymerase chain reaction (RT-PCR). Among those, the RNeasy plant RNA kit was best to isolate RNA and the isolated RNA was good enough for further applications. To ensure a reliable detection for strawberry viruses, synthetic diagnosis clones for major seven strawberry viruses such as strawberry mild yellow edge virus, SMoV, strawberry latent ring spot virus, strawberry crinkle virus, strawberry pallidosis associated virus, strawberry vein banding virus and strawberry necrotic spot virus have been constructed. Based on the synthetic genes in each clone, primer sets for seven strawberry viruses were designed and tested an RT-PCR condition through a simultaneous application of the same annealing temperature that allowed to achieve an efficient and convenient diagnosis.

바이러스의 정확한 진단법 확립은 바이러스의 피해 및 확산을 예방하는데 매우 중요하게 작용한다. 대부분의 딸기 바이러스는 조직내에 낮은 역가로 분포하여 진단이 어렵고, 특히 딸기 조직은 다당류 및 페놀화합물의 함유가 많아 RNA 추출이 어려운 것으로 알려져 있다. 딸기 우량묘 생산에 필요한 바이러스 검정기술을 확립하기 위해 본 연구에서는 딸기 잎에서 바이러스 진단을 위해 가장 최적의 RNA 추출방법 정립을 위해 다양한 상용 키트와 시약을 이용하여 RNA 추출효율 비교하였다. 바이러스 진단을 통한 RNA 추출효율을 분석하기 위해 SMoV 감염주인 미홍 딸기 품종을 이용하여 다양한 단계에서 잎조직으로부터 RNA를 추출하고 바이러스 진단을 수행하였다. 식물 RNA 추출 방법 가운데 상업용으로 판매되는 RNeasy plant mini kit (Qiagen)를 이용하는 경우 본 연구에서 살펴본 one-step 또는 two-step RT-PCR 방법과 무관하게 SMoV의 검출이 잘 되었다. 또한, 딸기 우량묘의 바이러스 검정에 대한 신뢰있는 진단방법을 구축하기 위해 주요 딸기 바이러스인 strawberry mild yellow edge virus (SMYEV), strawberry mottle virus (SMoV), strawberry latent ringspot virus (SLRSV), strawberry crinkle virus (SCV), strawberry pallidosis associated virus (SPaV), strawberry vein banding virus (SVBV) 및 strawberry necrotic shock virus (SNSV) 7종에 대한 유전자 합성을 통해 진단클론을 제작하였다. 각 클론의 합성유전자를 기반으로 7종의 딸기바이러스 프라이머 세트를 설계하고 편리한 진단법 수행을 위해 동일한 PCR 조건을 설정하였다.

Keywords

References

  1. Bonneau, P., Hogue, R., Tellier, S. and Fournier, V. 2019. Evaluation of various sources of viral infection in strawberry fields of Qubec, Canada. J. Econ. Entomol. 112: 2577-2583. https://doi.org/10.1093/jee/toz205
  2. Cieslinska, M. 2019. Genetic diversity of seven Strawberry mottle virus isolates in Poland. Plant Pathol. J. 35: 389-392. https://doi.org/10.5423/PPJ.NT.12.2018.0306
  3. Cho, J.-D., Choi, G.-S., Chung, B.-N., Kim, J.-S. and Choi, H.-S. 2011. Strawberry mild yellow edge potexvirus from strawberry in Korea. Plant Pathol. J. 27: 187-190. https://doi.org/10.5423/PPJ.2011.27.2.187
  4. Choi, G.-S., Lee, J.-A., Cho, J.-D. Chung, B.-N., Cho, I.-S. and Kim, J.-S. 2009. Strawberry virus diseases occurring in Korea, 2007-2008. Res. Plant Dis. 15: 8-12. https://doi.org/10.5423/RPD.2009.15.1.008
  5. Chung, B. N., Cho, I. S. and Cho, J. D. 2009. Effective application of CF11 cellulose for detection of Apple scar skin viroid in Apple. Plant Pathol. J. 25: 291-293. https://doi.org/10.5423/PPJ.2009.25.3.291
  6. Constable, F. E., Bottcher, C., Kelly, G., Nancarrow, N., Milinkovic, M., Persely, D. M. et al. 2010. The seasonal detection of strawberry viruses in Victoria, Australia. Julius-Kuhn-Archiv 427: 27-34.
  7. Converse, R. H. 1987. Virus and viruslike diseases of Fragaria (strawberry). In: Virus Diseases of Small Fruits, Agriculture Handbook No. 631, ed. by R. H. Converse, pp. 1-100. U.S. Department of Agriculture, Agricultural Research Service, Washington, DC, USA.
  8. Craig, D. L. and Stultz, H. T. 1964. Aphid dissemination of strawberry viruses in Nova Scotia. Can. J. Plant Sci. 44: 235-239. https://doi.org/10.4141/cjps64-045
  9. Dal Zotto, A., Nome, S. F., Di Rienzo, J. A. and Docampo, D. M. 1999. Fluctuations of Prunus necrotic ringspot virus (PNRSV) at various phenological stages in peach cultivars. Plant Dis. 83: 1055-1057. https://doi.org/10.1094/PDIS.1999.83.11.1055
  10. Frazier, N. W. and Sylvester, E. S. 1960. Half-lives of transmissibility of two aphid-borne viruses. Virology 12: 233-244. https://doi.org/10.1016/0042-6822(60)90197-5
  11. Frazier, N. W., Sylvester, E. S. and Richardson, J. 1987. Strawberry crinkle. In: Virus Diseases of Small Fruits, Agriculture Handbook No. 631, ed. by R. H. Converse, pp. 20-55. U.S. Department of Agriculture, Washington, DC, USA.
  12. Freeman, J. A. and Mellor, F. C. 1962. Influence of latent viruses on vigor, yield and quality of British Sovereign strawberries. Can. J. Plant Sci. 42: 602-610. https://doi.org/10.4141/cjps62-103
  13. Heleguera, P. R., Taborda, R., Docampo, D. M. and Ducasse, D. A. 2001. Immunocapture reverse transcription-polymerase chain reaction combined with nested PCR greatly increases the detection of Prunus necrotic ring spot virus in the peach. J. Virol. Methods 95: 93-100. https://doi.org/10.1016/S0166-0934(01)00299-3
  14. Krczal, H. 1982. Investigation on the biology of the strawberry aphid (Chaetosiphon fragaefolii), the most important vector of strawberry viruses in West Germany. Acta Hortic. 129: 63-68. https://doi.org/10.17660/ActaHortic.1982.129.11
  15. Kominek, P., Glasa, M. and Kominkova, M. 2009. Analysis of multiple virus-infected grapevine plant reveals persistence but uneven virus distribution. Acta Virol. 53: 281-285. https://doi.org/10.4149/av_2009_04_281
  16. Kwon, S.-J., Cho, I.-S., Yoon, J.-Y. and Choi, G.-S. 2018. Genetic diversity of two isolates in Strawberry mild yellow edge virus from Korea. Res. Plant Dis. 24: 285-291. https://doi.org/10.5423/RPD.2018.24.4.285
  17. Kwon, S.-J., Yoon, J.-B., Cho, I.-S., Yoon, J.-Y. and Kwon, T.-R. 2019. Incidence of aphid-transmitted strawberry viruses in Korea and phylogenetic analysis of Korean isolates of Strawberry mottle virus. Res. Plant Dis. 25: 226-232. https://doi.org/10.5423/RPD.2019.25.4.226
  18. Mahmoudpour, A. 2004. Diagnosis and quantification of Strawberry vein banding virus using molecular approaches. Acta Hortic. 656: 69-74. https://doi.org/10.17660/ActaHortic.2004.656.9
  19. Martin, R. R. and Tzanetakis, I. E. 2006. Characterization and recent advances in detection of strawberry viruses. Plant Dis. 90: 384-396. https://doi.org/10.1094/PD-90-0384
  20. Milkus, B. N. 2001. Incidence of four NEPO viruses in Missouri vineyards. Am. J. Enol. Vitic. 52: 56-57.
  21. Murant, A. F. 1974. CMI/AAB Description of Plant Viruses. No. 126. Strawberry Latent Ringspot. Commonwealth Mycological Institute, Kew, Surrey, UK. 4 pp.
  22. Posthuma, K. I., Adams, A. N., Hong, Y. and Kirby, M. J. 2002. Detection of Strawberry crinkle virus in plants and aphids by RT-PCR using conserved L gene sequences. Plant Pathol. 51: 266-274. https://doi.org/10.1046/j.1365-3059.2002.00725.x
  23. Richardson, J, Frazier, N. W. and Sylvester, E. S. 1972. Rhabdoviruslike particles associated with strawberry crinkle virus. Phytopathology 62: 491-492. https://doi.org/10.1094/Phyto-62-491
  24. Spiegel, S. and Martin, R. R. 1998. Virus and viruslike disease. In: Compendium of Strawberry Diseases, ed. by J. L. Maas, pp. 62-72. American Phytopathological Society, St. Paul, MN, USA.
  25. Stace-Smith, R. 1970. CMI/AAB Description of Plant Viruses. No. 18. Tomato Ringspot Virus. Commonwealth Mycological Institute, Kew, Surrey, UK. 4 pp.
  26. Tzanetakis, I. E., Mackey, I. C. and Martin, R. R. 2004. Strawberry necrotic shock virus is a distinct virus and not a strain of Tobacco streak virus. Arch. Virol. 149: 2001-2011. https://doi.org/10.1007/s00705-004-0330-y
  27. Tzanetakis, I. E. and Martin,R. R. 2013. Expanding field of strawberry viruses which are important in North America. Int. J. Fruit Sci. 13: 184-195. https://doi.org/10.1080/15538362.2012.698164
  28. Vaughan, E. K. 1933. Transmission of the crinkle disease of strawberry. Phytopathology 23: 738-740.
  29. Veetil, T. T., Ho, T., Moyer, C., Whitaker, V. M. and Tzanetakis, I. E. 2016. Detection of Strawberry necrotic shock virus using conventional and Taqman quantitative RT-PCR. J. Virol. Methods 235: 176-181. https://doi.org/10.1016/j.jviromet.2016.06.005
  30. Zeller, S. M. and Vaughan, E. K. 1932. Crinkle disease of strawberry. Phytopathology 22: 709-713.
  31. Zhang, Y., Peng, X., Liu, Y., Li, Y., Luo, Y., Wang, X. et al. 2018. Evaluation of suitable reference genes for qRT-PCR normalization in strawberry (Fragaria$\times$ananassa) under different experimental conditions. BMC Mol. Biol. 19: 8. https://doi.org/10.1186/s12867-018-0109-4