DOI QR코드

DOI QR Code

Calcineurin-Responsive Transcription Factor CgCrzA Is Required for Cell Wall Integrity and Infection-Related Morphogenesis in Colletotrichum gloeosporioides

  • Wang, Ping (Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University) ;
  • Li, Bing (College of Horticulture and Plant Protection, Yangzhou University) ;
  • Pan, Yu-Ting (Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University) ;
  • Zhang, Yun-Zhao (Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University) ;
  • Li, De-Wei (The Connecticut Agricultural Experiment Station Valley Laboratory) ;
  • Huang, Lin (Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University)
  • 투고 : 2020.04.23
  • 심사 : 2020.08.31
  • 발행 : 2020.10.01

초록

The ascomycete fungus Colletotrichum gloeosporioides infects a wide range of plant hosts and causes enormous economic losses in the world. The transcription factors (TFs) play an important role in development and pathogenicity of many organisms. In this study, we found that the C2H2 TF CgCrzA is localized in both cytoplasm and nucleus under standard condition, and it translocated from cytoplasm to nucleus in a calcineurin-dependent manner. Moreover, the ΔCgCrzA was hypersensitive to cell wall perturbing agents and showed severe cell wall integrity defects. Deletion of the CgCRZA inhibited the development of invasive structures and lost pathogenicity to plant hosts. Our results suggested that calcineurin-responsive TF CgCrzA was not only involved in regulating cell wall integrity, but also in morphogenesis and virulence in C. gloeosporioides.

키워드

참고문헌

  1. Araujo, L., Goncalves, A. E. and Stadnik, M. J. 2014. Ulvan effect on conidial germination and appressoria formation of Colletotrichum gloeosporioides. Phytoparasitica 42:631-640. https://doi.org/10.1007/s12600-014-0404-7
  2. Bulik, D. A., Olczak, M., Lucero, H. A., Osmond, B. C., Robbins, P. W. and Specht, C. A. 2003. Chitin synthesis in Saccharomyces cerevisiae in response to supplementation of growth medium with glucosamine and cell wall stress. Eukaryot. Cell 2:886-900. https://doi.org/10.1128/EC.2.5.886-900.2003
  3. Cao, H., Huang, P., Zhang, L., Shi, Y., Sun, D., Yan, Y., Liu, X., Dong, B., Chen, G., Snyder, J. H., Lin, F. and Lu, J. 2016. Characterization of 47 Cys2-His2 zinc finger proteins required for the development and pathogenicity of the rice blast fungus Magnaporthe oryzae. New Phytol. 211:1035-1051. https://doi.org/10.1111/nph.13948
  4. Chang, H. X., Miller, L. A. and Hartman, G. L. 2014. Melaninindependent accumulation of turgor pressure in appressoria of Phakopsora pachyrhizi. Phytopathology 104:977-984. https://doi.org/10.1094/PHYTO-12-13-0335-R
  5. Chen, L., Tong, Q., Zhang, C. and Ding, K. 2019. The transcription factor FgCrz1A is essential for fungal development, virulence, deoxynivalenol biosynthesis and stress responses in Fusarium graminearum. Curr. Genet. 65:153-166. https://doi.org/10.1007/s00294-018-0853-5
  6. Chen, W., Provart, N. J., Glazebrook, J., Katagiri, F., Chang, H. S., Eulgem, T., Mauch, F., Luan, S., Zou, G., Whitham, S. A., Budworth, P. R., Tao, Y., Xie, Z., Chen, X., Lam, S., Kreps, J. A., Harper, J. F., Si-Ammour, A., Mauch-Mani, B., Heinlein, M., Kobayashi, K., Hohn, T., Dangl, J. L., Wang, X. and Zhu, T. 2002. Expression profile matrix of Arabidopsis transcription factor genes suggests their putative functions in response to environmental stresses. Plant Cell 14:559-574. https://doi.org/10.1105/tpc.010410
  7. Choi, J., Kim, Y., Kim, S., Park, J. and Lee, Y.-H. 2009. MoCRZ1, a gene encoding a calcineurin-responsive transcription factor, regulates fungal growth and pathogenicity of Magnaporthe oryzae. Fungal Genet. Biol. 46:243-254. https://doi.org/10.1016/j.fgb.2008.11.010
  8. Cyert, M. S. 2003. Calcineurin signaling in Saccharomyces cerevisiae: how yeast go crazy in response to stress. Biochem. Biophys. Res. Commun. 311:1143-1150. https://doi.org/10.1016/S0006-291X(03)01552-3
  9. Dean, R., Van Kan, J. A., Pretorius, Z. A., Hammond-Kosack, K. E., Di Pietro, A., Spanu, P. D., Rudd, J. J., Dickman, M., Kahmann, R., Ellis, J. and Foster, G. D. 2012. The top 10 fungal pathogens in molecular plant pathology. Mol. Plant Pathol. 13:414-430. https://doi.org/10.1111/j.1364-3703.2011.00783.x
  10. Dichtl, K., Samantaray, S. and Wagener, J. 2016. Cell wall integrity signaling in human pathogenic fungi. Cell. Microbiol. 18:1228-1238. https://doi.org/10.1111/cmi.12612
  11. Doering, T. L., Nosanchuk, J. D., Roberts, W. K. and Casadevall, A. 1999. Melanin as a potential cryptococcal defence against microbicidal proteins. Med. Mycol. 37:175-181. https://doi.org/10.1046/j.1365-280X.1999.00218.x
  12. Dubey, A. K., Barad, S., Luria, N., Kumar, D., Espeso, E. A. and Prusky, D. B. 2016. Cation-stress-responsive transcription factors SltA and CrzA regulate morphogenetic processes and pathogenicity of Colletotrichum gloeosporioides. PLoS ONE 11:e0168561. https://doi.org/10.1371/journal.pone.0168561
  13. Eisenman, H. C. and Casadevall, A. 2012. Synthesis and assembly of fungal melanin. Appl. Microbiol. Biotechnol. 93:931-940. https://doi.org/10.1007/s00253-011-3777-2
  14. Englbrecht, C. C., Schoof, H. and Bohm, S. 2004. Conservation, diversification and expansion of C2H2 zinc finger proteins in the Arabidopsis thaliana genome. BMC Genomics 5:39. https://doi.org/10.1186/1471-2164-5-39
  15. Fang, Y. L., Xia, L. M., Wang, P., Zhu, L. H., Ye, J. R. and Huang, L. 2018. The MAPKKK CgMck1 required for cell wall integrity, appressorium development, and pathogenicity in Colletotrichum gloeosporioides. Genes (Basel) 9:543. https://doi.org/10.3390/genes9110543
  16. Foster, A. J., Jenkinson, J. M. and Talbot, N. J. 2003. Trehalose synthesis and metabolism are required at different stages of plant infection by Magnaporthe grisea. EMBO J. 22:225-235. https://doi.org/10.1093/emboj/cdg018
  17. Garcia, R., Bermejo, C., Grau, C., Perez, R., Rodriguez-Pena, J. M., Francois, J., Nombela, C. and Arroyo, J. 2004. The global transcriptional response to transient cell wall damage in Saccharomyces cerevisiae and its regulation by the cell integrity signaling pathway. J. Biol. Chem. 279:15183-15195. https://doi.org/10.1074/jbc.M312954200
  18. Garrett-Engele, P., Moilanen, B. and Cyert, M. S. 1995. Calcineurin, the $Ca^{2+}$/calmodulin-dependent protein phosphatase, is essential in yeast mutants with cell integrity defects and in mutants that lack a functional vacuolar $H^+$-ATPase. Mol. Cell. Biol. 15:4103-4114. https://doi.org/10.1128/MCB.15.8.4103
  19. Geoghegan, I., Steinberg, G. and Gurr, S. 2017. The role of the fungal cell wall in the infection of plants. Trends Microbiol. 25:957-967. https://doi.org/10.1016/j.tim.2017.05.015
  20. Gow, N. A. R., Latge, J.-P. and Munro, C. A. 2017. The fungal cell wall structure, biosynthesis, and function. Microbiol. Spectr. 5:FUNK-0035-2016.
  21. He, F., Zhang, X., Mafurah, J. J., Zhang, M., Qian, G., Wang, R., Safdar, A., Yang, X., Liu, F. and Dou, D. 2016. The transcription factor VpCRZ1 is required for fruiting body formation and pathogenicity in Valsa pyri. Microb. Pathog. 95:101-110. https://doi.org/10.1016/j.micpath.2016.02.018
  22. Huang, L., Kim, K.-T., Yang, J.-Y., Song, H., Choi, G., Jeon, J., Cheong, K., Ko, J., Xu, H. and Lee, Y.-H. 2019. A highquality draft genome sequence of Colletotrichum gloeosporioides sensu stricto SMCG1#C, a causal agent of anthracnose on Cunninghamia lanceolata in China. Mol. Plant-Microbe Interact. 32:139-141. https://doi.org/10.1094/MPMI-05-18-0144-A
  23. Kim, S., Hu, J., Oh, Y., Park, J., Choi, J., Lee, Y.-H., Dean, R. A. and Mitchell, T. K. 2010. Combining ChIP-chip and expression profiling to model the MoCRZ1 mediated circuit for Ca/calcineurin signaling in the rice blast fungus. PLoS Pathog. 6:e1000909. https://doi.org/10.1371/journal.ppat.1000909
  24. Kusuya, Y., Hagiwara, D., Sakai, K., Yaguchi, T., Gonoi, T. and Takahashi, T. 2017. Transcription factor Afmac1 controls copper import machinery in Aspergillus fumigatus. Curr. Genet. 63:777-789. https://doi.org/10.1007/s00294-017-0681-z
  25. Langner, T. and Gohre, V. 2016. Fungal chitinases: function, regulation, and potential roles in plant/pathogen interactions. Curr. Genet. 62:243-254. https://doi.org/10.1007/s00294-015-0530-x
  26. Lenardon, M. D., Munro, C. A. and Gow, N. A. 2010. Chitin synthesis and fungal pathogenesis. Curr. Opin. Microbiol. 13:416-423. https://doi.org/10.1016/j.mib.2010.05.002
  27. Levin, D. E. 2011. Regulation of cell wall biogenesis in Saccharomyces cerevisiae: the cell wall integrity signaling pathway. Genetics 189:1145-1175. https://doi.org/10.1534/genetics.111.128264
  28. Li, B., Dong, X., Zhao, R., Kou, R., Zheng, X. and Zhang, H. 2019. The t-SNARE protein FgPep12, associated with Fg-Vam7, is essential for ascospore discharge and plant infection by trafficking $Ca^{2+}$ ATPase FgNeo1 between Golgi and endosome/vacuole in Fusarium graminearum. PLoS Pathog. 15:e1007754. https://doi.org/10.1371/journal.ppat.1007754
  29. Madrid, M. P., Di Pietro, A. and Roncero, M. I. 2003. Class V chitin synthase determines pathogenesis in the vascular wilt fungus Fusarium oxysporum and mediates resistance to plant defence compounds. Mol. Microbiol. 47:257-266. https://doi.org/10.1046/j.1365-2958.2003.03299.x
  30. Martin-Udiroz, M., Madrid, M. P. and Roncero, M. I. 2004. Role of chitin synthase genes in Fusarium oxysporum. Microbiology (Reading) 50:3175-3187. https://doi.org/10.1099/mic.0.27236-0
  31. Pabo, C. O. and Sauer, R. T. 1992. Transcription factors: structural families and principles of DNA recognition. Annu. Rev. Biochem. 61:1053-1095. https://doi.org/10.1146/annurev.bi.61.070192.005201
  32. Park, H.-S., Lee, S. C., Cardenas, M. E. and Heitman, J. 2019. Calcium-calmodulin-calcineurin signaling: a globally conserved virulence cascade in eukaryotic microbial pathogens. Cell Host Microbe 26:453-462. https://doi.org/10.1016/j.chom.2019.08.004
  33. Pusztahelyi, T. 2018. Chitin and chitin-related compounds in plant-fungal interactions. Mycology 9:189-201. https://doi.org/10.1080/21501203.2018.1473299
  34. Ryder, L. S., Dagdas, Y. F., Mentlak, T. A., Kershaw, M. J., Thornton, C. R., Schuster, M., Chen, J., Wang, Z. and Talbot, N. J. 2013. NADPH oxidases regulate septin-mediated cytoskeletal remodeling during plant infection by the rice blast fungus. Proc. Natl. Acad. Sci. U. S. A. 110:3179-3184. https://doi.org/10.1073/pnas.1217470110
  35. Schumacher, J. 2016. DHN melanin biosynthesis in the plant pathogenic fungus Botrytis cinerea is based on two developmentally regulated key enzyme (PKS)-encoding genes. Mol. Microbiol. 99:729-748. https://doi.org/10.1111/mmi.13262
  36. Schumacher, J., de Larrinoa, I. F. and Tudzynski, B. 2008. Calcineurin-responsive zinc finger transcription factor CRZ1 of Botrytis cinerea is required for growth, development, and full virulence on bean plants. Eukaryot. Cell 7:584-601. https://doi.org/10.1128/EC.00426-07
  37. Son, H., Seo, Y.-S., Min, K., Park, A. R., Lee, J., Jin, J.-M., Lin, Y., Cao, P., Hong, S.-Y., Kim, E.-K., Lee, S.-H., Cho, A., Lee, S., Kim, M.-G., Kim, Y., Kim, J.-E., Kim, J.-C., Choi, G. J., Yun, S.-H., Lim, J. Y., Kim, M., Lee, Y.-H., Choi, Y.-D. and Lee, Y.-W. 2011. A phenome-based functional analysis of transcription factors in the cereal head blight fungus, Fusarium graminearum. PLoS Pathog. 7:e1002310. https://doi.org/10.1371/journal.ppat.1002310
  38. Soriani, F. M., Malavazi, I., da Silva Ferreira, M. E., Savoldi, M., Von Zeska Kress, M. R., de Souza Goldman, M. H., Loss, O., Bignell, E. and Glodman, G. H. 2008. Functional characterization of the Aspergillus fumigatus CRZ1 homologue, CrzA. Mol. Microbiol. 67:1274-1291. https://doi.org/10.1111/j.1365-2958.2008.06122.x
  39. Soulie, M. C., Perino, C., Piffeteau, A., Choquer, M., Malfatti, P., Cimerman, A., Kunz, C., Boccara, M. and Vidal-Cros, A. 2006. Botrytis cinerea virulence is drastically reduced after disruption of chitin synthase class III gene (Bcchs3a). Cell. Microbiol. 8:1310-1321. https://doi.org/10.1111/j.1462-5822.2006.00711.x
  40. Soulie, M.-C., Piffeteau, A., Choquer, M., Boccara, M. and Vidal-Cros, A. 2003. Disruption of Botrytis cinerea class I chitin synthase gene Bcchs1 results in cell wall weakening and reduced virulence. Fungal Genet. Biol. 40:38-46. https://doi.org/10.1016/S1087-1845(03)00065-3
  41. Stathopoulos, A. M. and Cyert, M. S. 1997. Calcineurin acts through the CRZ1/TCN1-encoded transcription factor to regulate gene expression in yeast. Genes Dev. 11:3432-3444. https://doi.org/10.1101/gad.11.24.3432
  42. Thompson, J. E., Fahnestock, S., Farrall, L., Liao, D. I., Valent, B. and Jordan, D. B. 2000. The second naphthol reductase of fungal melanin biosynthesis in Magnaporthe grisea. J. Biol. Chem. 275:34867-34872. https://doi.org/10.1074/jbc.M006659200
  43. Wang, T., Ren, D., Guo, H., Chen, X., Zhu, P., Nie, H. and Xu, L. 2020. CgSCD1 is essential for melanin biosynthesis and pathogenicity of Colletotrichum gloeosporioides. Pathogens 9:141. https://doi.org/10.3390/pathogens9020141
  44. Wilson, R. A. and Talbot, N. J. 2009. Under pressure: investigating the biology of plant infection by Magnaporthe oryzae. Nat. Rev. Microbiol. 7:185-195. https://doi.org/10.1038/nrmicro2032
  45. Xu, J. R., Staiger, C. J. and Hamer, J. E. 1998. Inactivation of the mitogen-activated protein kinase Mps1 from the rice blast fungus prevents penetration of host cells but allows activation of plant defense responses. Proc. Natl. Acad. Sci. U. S. A. 95:12713-12718. https://doi.org/10.1073/pnas.95.21.12713
  46. Xu, X., Wang, Y., Tian, C. and Liang, Y. M. 2016. The Colletotrichum gloeosporioides RhoB regulates cAMP and stress response pathways and is required for pathogenesis. Fungal Genet. Biol. 96:12-24. https://doi.org/10.1016/j.fgb.2016.09.002
  47. Yang, J.-Y., Fang, Y.-L., Wang, P., Ye, J.-R. and Huang, L. 2018. Pleiotropic roles of ChSat4 in asexual development, cell wall integrity maintenance, and pathogenicity in Colletotrichum higginsianum. Front. Microbiol. 9:2311. https://doi.org/10.3389/fmicb.2018.02311
  48. Yu, J.-H., Hamari, Z., Han, K.-H., Seo, J.-A., Reyes-Dominguez, Y. and Scazzocchio, C. 2004. Double-joint PCR: a PCRbased molecular tool for gene manipulations in filamentous fungi. Fungal Genet. Biol. 41:973-981. https://doi.org/10.1016/j.fgb.2004.08.001
  49. Yu, X., Huo, L., Liu, H., Chen, L., Wang, Y. and Zhu, X. 2015. Melanin is required for the formation of the multi-cellular conidia in the endophytic fungus Pestalotiopsis microspora. Microbiol. Res. 179:1-11. https://doi.org/10.1016/j.micres.2015.06.004
  50. Yun, Y., Zhou, X., Yang, S., Wen, Y., You, H., Zheng, Y., Norvienyeku, J., Shim, W.-B. and Wang, Z. 2019. Fusarium oxysporum f. sp. lycopersici $C_2H_2$ transcription factor FolCzf1 is required for conidiation, fusaric acid production, and early host infection. Curr. Genet. 65:773-783. https://doi.org/10.1007/s00294-019-00931-9
  51. Zhang, T., Xu, Q., Sun, X. and Li, H. 2013. The calcineurin-responsive transcription factor Crz1 is required for conidation, full virulence and DMI resistance in Penicillium digitatum. Microbiol. Res. 168:211-222. https://doi.org/10.1016/j.micres.2012.11.006
  52. Zhao, C., Jung, U. S., Garrett-Engele, P., Roe, T., Cyert, M. S. and Levin, D. E. 1998. Temperature-induced expression of yeast FKS2 is under the dual control of protein kinase C and calcineurin. Mol. Cell. Biol. 18:1013-1022. https://doi.org/10.1128/MCB.18.2.1013
  53. Zhou, X., Li, G. and Xu, J.-R. 2011. Efficient approaches for generating GFP fusion and epitope-tagging constructs in filamentous fungi. Methods Mol. Biol. 722:199-212. https://doi.org/10.1007/978-1-61779-040-9_15