References
- Zhong C, Zhang GC, Liu M, Zheng XT, Han PP, Jia SR. 2013. Metabolic flux analysis of Gluconacetobacter xylinus for bacterial cellulose production. Appl. Microbiol. Biotechnol. 97: 6189-6199. https://doi.org/10.1007/s00253-013-4908-8
- Mangayil R, Rajala S, Pammo A, Sarlin E, Luo J, Santala V, et al. 2017. Engineering and characterization of bacterial nanocellulose films as low cost and flexible sensor material. ACS Appl. Mater. Interfaces 9: 19048-19056. https://doi.org/10.1021/acsami.7b04927
-
Ha JH, Shah N, Ul-Islam M, Khan T, Park JK. 2011. Bacterial cellulose production from a single sugar
$\alpha$ -linked glucuronic acid-based oligosaccharide. Process Biochem. 46: 1717-1723. https://doi.org/10.1016/j.procbio.2011.05.024 - Sajadi E, Fatemi SSA, Babaeipour V, Deldar AA, Yakhchali B, Anvar MS. 2019. Increased cellulose production by heterologous expression of bcsA and B genes from Gluconacetobacter xylinus in E. coli Nissle 1917. Bioprocess Biosyst. Eng. 42: 2023-2034. https://doi.org/10.1007/s00449-019-02197-4
- Buldum G, Bismarck A, Mantalaris A. 2018. Recombinant biosynthesis of bacterial cellulose in genetically modified Escherichia coli. Bioprocess Biosyst. Eng. 41: 265-279. https://doi.org/10.1007/s00449-017-1864-1
- Zhu H, Jia S, Wan T, Jia Y, Yang H, Li J, et al. 2011. Biosynthesis of spherical Fe3O4/bacterial cellulose nanocomposites as adsorbents for heavy metal ions. Carbohydr. Polym. 86: 1558-1564. https://doi.org/10.1016/j.carbpol.2011.06.061
- Wu W, Tassi NG, Zhu H, Fang Z, Hu L. 2015. Nanocellulose-based translucent diffuser for optoelectronic device applications with dramatic improvement of light coupling. ACS Appl. Mater. Interfaces. 7: 26860-26864. https://doi.org/10.1021/acsami.5b09249
- Jang WD, Kim TY, Kim HU, Shim WY, Ryu JY, Park JH, et al. 2019. Genomic and metabolic analysis of Komagataeibacter xylinus DSM 2325 producing bacterial cellulose nanofiber. Biotechnol. Bioeng. 116: 3372-3381. https://doi.org/10.1002/bit.27150
- Gwon H, Park K, Chung SC, Kim RH, Kang JK, Ji SM, et al. 2019. A safe and sustainable bacterial cellulose nanofiber separator for lithium rechargeable batteries. Proc. Natl. Acad. Sci. USA 116: 19288-19293. https://doi.org/10.1073/pnas.1905527116
- Campano C, Balea A, Blanco A, Negro C. 2016. Enhancement of the fermentation process and properties of bacterial cellulose: a review. Cellulose 23: 57-91. https://doi.org/10.1007/s10570-015-0802-0
- Zhang H, Ye C, Xu N, Chen C, Chen X, Yuan F, et al. 2017. Reconstruction of a genome-scale metabolic network of Komagataeibacter nataicola RZS01 for cellulose production. Sci. Rep. 7: 7911. https://doi.org/10.1038/s41598-017-06918-1
- Florea M, Hagemann H, Santosa G, Abbott J, Micklem CN, Spencer-Milnes X, et al. 2016. Engineering control of bacterial cellulose production using a genetic toolkit and a new cellulose-producing strain. Proc. Natl. Acad. Sci. USA 113: E3431-E3440. https://doi.org/10.1073/pnas.1522985113
- Teh MY, Ooi KH, Danny Teo SX, Bin Mansoor ME, Shaun Lim WZ, Tan MH. 2019. An expanded synthetic biology toolkit for gene expression control in Acetobacteraceae. ACS Synth. Biol. 8: 708-723. https://doi.org/10.1021/acssynbio.8b00168
- Yim SS, An SJ, Kang M, Lee J, Jeong KJ. 2013. Isolation of fully synthetic promoters for high‐level gene expression in Corynebacterium glutamicum. Biotechnol. Bioeng. 110: 2959-2969. https://doi.org/10.1002/bit.24954
- Oh YH, Choi JW, Kim EY, Song BK, Jeong KJ, Park K, et al. 2015. Construction of synthetic promoter-based expression cassettes for the production of cadaverine in recombinant Corynebacterium glutamicum. Appl. Biochem. Biotechnol. 176: 2065-2075. https://doi.org/10.1007/s12010-015-1701-4
- GieBelmann G, Dietrich D, Jungmann L, Kohlstedt M, Jeon EJ, Yim SS, et al. 2019. Metabolic engineering of Corynebacterium glutamicum for high‐level ectoine production: design, combinatorial assembly, and implementation of a transcriptionally balanced heterologous ectoine pathway. Biotechnol. J. 14: 1800417. https://doi.org/10.1002/biot.201800417
- Hestrin S, Schramm M. 1954. Synthesis of cellulose by Acetobacter xylinum. 2. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose. Biochem. J. 58: 345-352. https://doi.org/10.1042/bj0580345
- Hur DH, Rhee HS, Lee JH, Shim WY, Kim TY, Lee SY, et al. 2020. Enhanced production of cellulose in Komagataeibacter xylinus by preventing insertion of IS element into cellulose synthesis gene. Biochem. Eng. J. 156: 107527. https://doi.org/10.1016/j.bej.2020.107527
- Kim J, Yun J, Rhee H, Chung S. 2016. Vector replicable in E. coli and cell of genus Komagataeibacter, cell including the same, and method of using the same. U.S. Patent No. 9,976,150. Washington, DC: U.S. Patent and Trademark Office.
- Seo SW, Yang JS, Kim I, Yang J, Min BE, Kim S, et al. 2013. Predictive design of mRNA translation initiation region to control prokaryotic translation efficiency. Metab. Eng. 15: 67-74. https://doi.org/10.1016/j.ymben.2012.10.006
- Salis HM, Mirsky EA, Voigt CA. 2009. Automated design of synthetic ribosome binding sites to control protein expression. Nat. Biotechnol. 27: 946-950. https://doi.org/10.1038/nbt.1568
Cited by
- Engineering Bacterial Cellulose by Synthetic Biology vol.21, pp.23, 2020, https://doi.org/10.3390/ijms21239185
- Developments in bioprocess for bacterial cellulose production vol.344, pp.no.pb, 2022, https://doi.org/10.1016/j.biortech.2021.126343
- Bacterial Nanocellulose Fortified with Antimicrobial and Anti-Inflammatory Natural Products from Chelidonium majus Plant Cell Cultures vol.15, pp.1, 2020, https://doi.org/10.3390/ma15010016
- Development of novel biocomposites based on the clean production of microbial cellulose from dairy waste (sour whey) vol.139, pp.1, 2020, https://doi.org/10.1002/app.51433