References
- Cong TX, Hao D, Wen X, Li XH, He G, Jiang X. 2019. From pathogenesis of acne vulgaris to anti-acne agents. Arch. Dermatol. Res. 311: 337-349. https://doi.org/10.1007/s00403-019-01908-x
- Samuels DV, Rosenthal R, Lin R, Chaudhari S, Natsuaki MN. 2020. Acne vulgaris and risk of depression and anxiety: a meta-analytic review. J. Am. Acad. Dermatol. 83: 532-541. https://doi.org/10.1016/j.jaad.2020.02.040
- Kassir M, Karagaiah P, Sonthalia S, Katsambas A, Galadari H, Gupta M, et al. 2020. Selective RAR agonists for acne vulgaris: a narrative review. J. Cosmet. Dermatol. 19: 1278-1283. https://doi.org/10.1111/jocd.13340
- Marron SE, Chernyshov PV, Tomas-Aragones L. 2019. Quality-of-life research in acne vulgaris: current status and future directions. Am. J. Clin. Dermatol. 20: 527-538. https://doi.org/10.1007/s40257-019-00438-6
- Valente Duarte de Sousa IC. 2014. Novel pharmacological approaches for the treatment of acne vulgaris. Expert. Opin. Investig. Drugs 23: 1389-1410. https://doi.org/10.1517/13543784.2014.923401
- Ji J, Zhang RH, Li HM, Guo Q, Zhang LL, Zhu J, et al. 2018. Correlations of SOX9 expression with serum IGF1 and inflammatory cytokines IL-1alpha and IL-6 in skin lesions of patients with acne. Euro. Rev. Med. Pharmacol. Sci. 22: 2549-2555.
- Ogawa R. 2017. Keloid and hypertrophic scars are the result of chronic inflammation in the reticular dermis. Int. J. Mol. Sci. 18: 606. https://doi.org/10.3390/ijms18030606
- Fenini G, Contassot E, French LE. 2017. Potential of IL-1, IL-18 and inflammasome inhibition for the treatment of inflammatory skin diseases. Front. Pharmacol. 8: 278. https://doi.org/10.3389/fphar.2017.00278
- Younis S, Javed Q. 2015. The interleukin-6 and interleukin-1A gene promoter polymorphism is associated with the pathogenesis of acne vulgaris. Arch. Dermatol. Res. 307: 365-370. https://doi.org/10.1007/s00403-014-1519-x
- Kim J-E, Kang Y-G, Park JS, Lim T-G, Lee KW. 2017. Review of soybean phytochemicals and their bioactive properties relevant for skin health. J. Food Nut. Res. 5: 852-858. https://doi.org/10.12691/jfnr-5-11-9
- Messina M. 2016. Soy and health update: evaluation of the clinical and epidemiologic literature. Nutrients 8: 754. https://doi.org/10.3390/nu8120754
- Waqas MK, Akhtar N, Mustafa R, Jamshaid M, Khan HM, Murtaza G. 2015. Dermatological and cosmeceutical benefits of glycine max (soybean) and its active components. Acta Pol. Pharm. 72: 3-11.
- Yang H, Lee SH, Ji H, Kim JE, Yoo R, Kim JH, et al. 2019. Orobol, an enzyme-convertible product of genistein, exerts anti-obesity effects by targeting casein kinase 1 epsilon. Sci. Rep. 9: 8942. https://doi.org/10.1038/s41598-019-43950-9
- Dessinioti C, Katsambas A. 2017. Propionibacterium acnes and antimicrobial resistance in acne. Clin. Dermatol. 35: 163-167. https://doi.org/10.1016/j.clindermatol.2016.10.008
- Kiriakidis S, Hogemeier O, Starcke S, Dombrowski F, Hahne JC, Pepper M, et al. 2005. Novel tempeh (fermented soyabean) isoflavones inhibit in vivo angiogenesis in the chicken chorioallantoic membrane assay. Br. J. Nutr. 93: 317-323. https://doi.org/10.1079/BJN20041330
- Lee PG, Lee SH, Hong EY, Lutz S, Kim BG. 2019. Circular permutation of a bacterial tyrosinase enables efficient polyphenol-specific oxidation and quantitative preparation of orobol. Biotechnol. Bioeng. 116: 19-27. https://doi.org/10.1002/bit.26795
- Lee SH, Baek K, Lee JE, Kim BG. 2016. Using tyrosinase as a monophenol monooxygenase: A combined strategy for effective inhibition of melanin formation. Biotechnol. Bioeng. 113: 735-743. https://doi.org/10.1002/bit.25855
- Lee WP, Lan KL, Liao SX, Huang YH, Hou MC, Lan KH. 2018. Inhibitory effects of amentoflavone and orobol on daclatasvir-induced resistance-associated variants of hepatitis C virus. Am. J. Chin. Med. 46: 835-852. https://doi.org/10.1142/S0192415X18500441
- Kolar SL, Tsai C-M, Torres J, Fan X, Li H, Liu GY. 2019. Propionibacterium acnes-induced immunopathology correlates with health and disease association. JCI Insight. 4: e124687. https://doi.org/10.1172/jci.insight.124687
- Common JEA, Barker JN, van Steensel MAM. 2019. What does acne genetics teach us about disease pathogenesis? Br. J. Dermatol. 181: 665-676. https://doi.org/10.1111/bjd.17721
- Nguyen CT, Sah SK, Zouboulis CC, Kim TY. 2018. Inhibitory effects of superoxide dismutase 3 on Propionibacterium acnes-induced skin inflammation. Sci. Rep. 8: 4024. https://doi.org/10.1038/s41598-018-22132-z
- Li X, He C, Chen Z, Zhou C, Gan Y, Jia Y. 2017. A review of the role of sebum in the mechanism of acne pathogenesis. J. Cosmet. Dermatol. 16: 168-173. https://doi.org/10.1111/jocd.12345
- Gabay C. 2006. Interleukin-6 and chronic inflammation. Arthritis Res. Ther. 8(Supple 2): S3. https://doi.org/10.1186/ar1917
- Murata M, Midorikawa K, Koh M, Umezawa K, Kawanishi S. 2004. Genistein and daidzein induce cell proliferation and their metabolites cause oxidative DNA damage in relation to isoflavone-induced cancer of estrogen-sensitive organs. Biochemistry 43: 2569-2577. https://doi.org/10.1021/bi035613d
Cited by
- Altering the Regioselectivity of Cytochrome P450 BM3 Variant M13 toward Genistein through Protein Engineering and Variation of Reaction Conditions vol.5, pp.49, 2020, https://doi.org/10.1021/acsomega.0c05088