DOI QR코드

DOI QR Code

Composition and Diversity of Gut Bacteria Associated with the Eri Silk Moth, Samia ricini, (Lepidoptera: Saturniidae) as Revealed by Culture-Dependent and Metagenomics Analysis

  • Received : 2020.02.28
  • Accepted : 2020.06.08
  • Published : 2020.09.28

Abstract

The polyphagous eri silk moth, Samia ricini, is associated with various symbiotic gut bacteria believed to provide several benefits to the host. The larvae of S. ricini were subjected to isolation of gut bacteria using culture-dependent 16S rRNA generic characterization, metagenomics analysis and qualitative enzymatic assays. Sixty culturable aerobic gut bacterial isolates comprising Firmicutes (54%) and Proteobacteria (46%); and twelve culturable facultative anaerobic bacteria comprising Proteobacteria (92%) and Firmicutes (8%) were identified inhabiting the gut of S. ricini. The results of metagenomics analysis revealed the presence of a diverse community of both culturable and un-culturable gut bacteria belonging to Proteobacteria (60%) and Firmicutes (20%) associated with seven orders. An analysis of the results of culturable isolation indicates that these bacterial isolates inhabited all the three compartments of the gut. Investigation on persistence of bacteria coupled with metagenomics analysis of the fifth instar suggested that bacteria persist in the gut across the different instar stages. In addition, enzymatic assays indicated that 48 and 75% of culturable aerobic, and 75% of anaerobic gut bacterial isolates had cellulolytic, lipolytic and nitrate reductase activities, thus suggesting that they may be involved in food digestion and nutritional provision to the host. These bacterial isolates may be good sources for profiling novel genes and biomolecules for biotechnological application.

Keywords

References

  1. Gurung K, Wertheim B, Falcao Salles J. 2019. The microbiome of pest insects: it is not just bacteria. Entomol. Exp. Appl. 167: 156-170. https://doi.org/10.1111/eea.12768
  2. Fry JC, Webster G, Cragg BA, Weightman AJ, Parkes RJ. 2006. Analysis of DGGE profiles to explore the relationship between prokaryotic community composition and biogeochemical processes in deep subseafloor sediments from the Peru Margin. FEMS Microbiol. Ecol. 58: 86-98. https://doi.org/10.1111/j.1574-6941.2006.00144.x
  3. Salem H, Florez L, Gerardo N, Kaltenpoth M. 2015. An out-of-body experience: the extracellular dimension for the transmission of mutualistic bacteria in insects. Proc. R. Soc. B 282: 20142957.
  4. Nardi JB, Mackie RI, Dawson JO. 2002. Could microbial symbionts of arthropod guts contribute significantly to nitrogen fixation in terrestrial ecosystems?. J. Insect Physiol. 48, 751-763.
  5. Berasategui A, Shukla S, Salem H, Kaltenpoth M. 2016. Potential applications of insect symbionts in biotechnology. Appl. Microbiol. Biotechnol. 100: 1567-1577. https://doi.org/10.1007/s00253-015-7186-9
  6. Sanders JG, Powell S, Kronauer DJ, Vasconcelos HL, Frederickson ME, Pierce NE. 2014. Stability and phylogenetic correlation in gut microbiota: lessons from ants and apes. Mol. Ecol. 23: 1268-1283. https://doi.org/10.1111/mec.12611
  7. Shin SC, Kim SH, You H, Kim B, Kim AC, Lee KA, et al. 2011. Drosophila microbiome modulates host developmental and metabolic homeostasis via insulin signaling. Science 334: 670-674. https://doi.org/10.1126/science.1212782
  8. Wang J, Weiss BL, Aksoy S. 2013. Tsetse fly microbiota: form and function. Front. Cell. Infect. Microbiol. 3: 69.
  9. Whitaker MR, Salzman S, Sanders J, Kaltenpoth M, Pierce N E. 2016. Microbial communities of lycaenid butterflies do not correlate with larval diet. Front. Microbiol. 7: 1920.
  10. Mitter C, Davis DR, Cummings MP. 2017. Phylogeny and evolution of Lepidoptera. Annu. Rev. Entomol. 62: 265-283. https://doi.org/10.1146/annurev-ento-031616-035125
  11. Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knight R. 2012. Diversity, stability and resilience of the human gut microbiota. Nature 489: 220-230. https://doi.org/10.1038/nature11550
  12. Brune A, Dietrich C. 2015. The gut microbiota of termites: digesting the diversity in the light of ecology and evolution. Annu. Rev. Microbiol. 69: 145-166. https://doi.org/10.1146/annurev-micro-092412-155715
  13. Paniagua Voirol LR, Frago E, Kaltenpoth M, Hilker M Fatouros NE. 2018. Bacterial symbionts in lepidoptera: their diversity, transmission, and impact on the host. Front. Microbiol. 9: 556. https://doi.org/10.3389/fmicb.2018.00556
  14. Sevim E, Çocar M, Sezgin FM, Sevim A. 2018. Aerobic gut bacterial flora of Cydia pomonella (L.)(Lepidoptera: Tortricidae) and their virulence to the host. Egyptian J. Biol. Pest Control 28: 30. https://doi.org/10.1186/s41938-018-0036-1
  15. Cho JC, Kim SJ. 2000. Increase in bacterial community diversity in subsurface aquifers receiving livestock wastewater input. Appl. Environ. Microbiol. 66: 956-965. https://doi.org/10.1128/AEM.66.3.956-965.2000
  16. Zelles L. 1999. Fatty acid patterns of phospholipids and lipopolysaccharides in the characterisation of microbial communities in soil: a review. Biol. Fertility Soils 29: 111-129. https://doi.org/10.1007/s003740050533
  17. CSB. 2013. Package and practices for cultivation of Eri silkworm host plant castor in ericulture (online). Available at http://www.krishisewa.com/articles/production-technology/251-eri-host-castor.html.
  18. Chen B, Yu T, Xie S, Du K, Liang X, Lan Y, et al. 2018. Comparative shotgun metagenomic data of the silkworm Bombyx mori gut microbiome. Sci. Data. 5: 1-0. https://doi.org/10.1038/sdata.2018.102
  19. Debaraj Y, Datta RN, Das PK, Benchamin KV. 2002. Eri silkworm crop improvement-A review. Indian J. Seric. 41: 100-105.
  20. Subramanianan K, Sakthivel N, Qadri SMH. 2013. Rearing technology of eri silkworm (Samia cynthia ricini) under varied seasonal and host plant conditions in Tamil Nadu. Int. J. Life Sci. Biotechnol. Pharma Res. 2: 130-141.
  21. Meth T, Gogoi H. 2016. Rearing of eri silkworm (Samia cynthia ricini Boisd.)(Lepidoptera: Saturniidae) in arunachal pradesh: a study in papumpare district. Bioresources 3: 46-52.
  22. Gandotra S, Kumar A, Naga K, Bhuyan PM, Gogoi DK, Sharma K, et al. 2018. Bacterial community structure and diversity in the gut of the muga silkworm, Antheraea assamensis (Lepidoptera: Saturniidae), from India. Insect Mol. Biol. 27: 603-619. https://doi.org/10.1111/imb.12495
  23. Swathiga G, Umapathy G, Parthiban KT, Angappan K. 2019. Growth response of different eco races of ERI silkworm reared on various castor genotypes. Entomol. Zool. J. 7: 1406-1410
  24. Pinto-Tomas AA, Sittenfeld A, Uribe-Lorío L, Chavarria F, Mora M, Janzen DH, et al. 2011. Comparison of midgut bacterial diversity in tropical caterpillars (Lepidoptera: Saturniidae) fed on different diets. Environ. Entomol. 40: 1111-1122. https://doi.org/10.1603/EN11083
  25. Kimura M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16: 111-120. https://doi.org/10.1007/BF01731581
  26. Felsenstein J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783-791. https://doi.org/10.1111/j.1558-5646.1985.tb00420.x
  27. Kumar S, Stecher G, Tamura K. 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33: 1870-1874. https://doi.org/10.1093/molbev/msw054
  28. Huang S, Sheng P, Zhang H. 2012. Isolation and identification of cellulolytic bacteria from the gut of Holotrichia parallela larvae (Coleoptera: Scarabaeidae). Int. J. Mol. Sci. 13: 2563-2577. https://doi.org/10.3390/ijms13032563
  29. Delalibera Jr I, Handelsman JO, Raffa KF. 2005. Contrasts in cellulolytic activities of gut microorganisms between the wood borer, Saperda vestita (Coleoptera: Cerambycidae), and the bark beetles, Ips pini and Dendroctonus frontalis (Coleoptera: Curculionidae). Environ. Entomol. 34: 541-547. https://doi.org/10.1603/0046-225X-34.3.541
  30. Feng W, Wang XQ, Zhou W, Liu GY, Wan YJ. 2011. Isolation and characterization of lipase-producing bacteria in the intestine of the silkworm, Bombyx mori, reared on different forage. J. Insect Sci. 11: 135.
  31. Handique G, Phukan A, Bhattacharyya B, Baruah AALH, Rahman SW, Baruah R. 2017. Characterization of cellulose degrading bacteria from the larval gut of the white grub beetle Lepidiota mansueta (Coleoptera: Scarabaeidae). Arch. Insect Biochem. Physiol. 94: e21370. https://doi.org/10.1002/arch.21370
  32. Shao Y, Chen B, Sun C, Ishida K, Hertweck C, Boland W. 2017. Symbiont-derived antimicrobials contribute to the control of the Lepidopteran gut microbiota. Cell Chem. Biol. 24: 66-75. https://doi.org/10.1016/j.chembiol.2016.11.015
  33. Yalashett S, Yandigeri MS, Rudrappa O, Muthugounder M, Gopalasamy S. 2017. Diversity of culturable and unculturable gut bacteria associated with field population of Spodoptera litura (Fab.).
  34. Colman DR, Toolson EC, Takacs‐Vesbach CD. 2012. Do diet and taxonomy influence insect gut bacterial communities?. Mol. Ecol. 21: 5124-5137. https://doi.org/10.1111/j.1365-294X.2012.05752.x
  35. Shi W, Xie S, Chen X, Sun S, Zhou X. Liu L, et al. 2013. Comparative genomic analysis of the endosymbionts of herbivorous insects reveals eco-environmental adaptations: biotechnology applications. PLoS Genet. 9: e1003131. https://doi.org/10.1371/journal.pgen.1003131
  36. Engel P Moran NA. 2013. The gut microbiota of insects-diversity in structure and function. FEMS Microbiol. Rev. 37: 699-735. https://doi.org/10.1111/1574-6976.12025
  37. Jovel J, Patterson J, Wang W, Hotte N, O'Keefe S, Mitchel T, et al. 2016. Characterization of the gut microbiome using 16S or shotgun metagenomics. Front. Microbiol. 7: 459.
  38. Alugah CI, Ibraheem O. 2014. Whole plant screenings for flavonoids and tannins contents in castor plant (Ricinus communis L.) and evaluation of their biological activities. Int. J. Herb. Med. 2: 68-76.
  39. Hui X, Mu-Wang LI, Yong Li-Ping, Z, Yue-Hua Z. 2007. Bacterial community in midguts of the silkworm larvae estimated by PCR/DGGE and 16S rDNA gene library analysis. Acta Entomol. Sinica 50: 222-233. https://doi.org/10.3321/j.issn:0454-6296.2007.03.003
  40. Shao Y, Chen B, Sun C, Ishida K, Hertweck C, Boland W. 2017. Symbiont-derived antimicrobials contribute to the control of the Lepidopteran gut microbiota. Cell Chem. Biol. 24: 66-75. https://doi.org/10.1016/j.chembiol.2016.11.015
  41. Bagde US, Gopi U, Prasad R. 2013. Isolation and characterization of gut-associated microbes in cockroach. Afr. J. Microbiol. Res. 7: 2034-2039. https://doi.org/10.5897/AJMR12.844
  42. Douglas AE, Wong CAN, Ng P. 2011. Low- diversity bacterial community in the gut of the fruitfly Drosophila melanogaster. Environ. Microbiol. 13: 1889-1900. https://doi.org/10.1111/j.1462-2920.2011.02511.x
  43. Funke M, Buchler R, Mahobia V, Schneeberg A, Ramm M, Boland W. 2008. Rapid hydrolysis of quorum‐sensing molecules in the gut of lepidopteran larvae. Chem. Bio. Chem. 9: 1953-1959. https://doi.org/10.1002/cbic.200700781
  44. Moran NA. 2006. Symbiosis. Curr. Biol. 16: R866-R871. https://doi.org/10.1016/j.cub.2006.09.019
  45. Shah SK, Patel CJ, Rathore BS, Desai AG. 2015. Evaluation of castor stems residue for cellulose and lignin content. Int. J. Agric. Environ. Biotechnol. 8: 331. https://doi.org/10.5958/2230-732X.2015.00041.8

Cited by

  1. Antagonistic Effects of Delia antiqua (Diptera: Anthomyiidae)-Associated Bacteria Against Four Phytopathogens vol.114, pp.2, 2020, https://doi.org/10.1093/jee/toab002
  2. Improvement of Enantiomeric l-Lactic Acid Production from Mixed Hexose-Pentose Sugars by Coculture of Enterococcus mundtii WX1 and Lactobacillus rhamnosus SCJ9 vol.7, pp.2, 2020, https://doi.org/10.3390/fermentation7020095