참고문헌
- Ibekwe AM, Ma J, Murinda SE. 2016. Bacterial community composition and structure in an Urban River impacted by different pollutant sources. Sci. Total Environ. 566: 1176-1185. https://doi.org/10.1016/j.scitotenv.2016.05.168
- Araya R, Tani K, Takagi T, Yamaguchi N, Nasu M. 2003. Bacterial activity and community composition in stream water and biofilm from an urban river determined by fluorescent in situ hybridization and DGGE analysis. FEMS Microbiol. Ecol. 43: 111-119. https://doi.org/10.1111/j.1574-6941.2003.tb01050.x
- Koubar M, Houhou J, Hoteit M, Al-Iskandarani M. 2016. A comparative study of the physicochemical and bacterial characteristics of the three drinking water sources distributed in Haret-Hreik city, Lebanon.
- Gao Y, Wang C, Zhang W, Di P, Yi N, Chen C. 2017. Vertical and horizontal assemblage patterns of bacterial communities in a eutrophic river receiving domestic wastewater in southeast China. Environ. Pollut. 230: 469-478. https://doi.org/10.1016/j.envpol.2017.06.081
- Sheng Y, Qu Y, Ding C, Sun Q, Mortimer RJ. 2013. A combined application of different engineering and biological techniques to remediate a heavily polluted river. Ecol. Eng. 57: 1-7. https://doi.org/10.1016/j.ecoleng.2013.04.004
- Dinh Q, Moreau-Guigon E, Labadie P, Alliot F, Teil M-J, Blanchard M, et al. 2017. Fate of antibiotics from hospital and domestic sources in a sewage network. Sci. Total Environ. 575: 758-766. https://doi.org/10.1016/j.scitotenv.2016.09.118
- Chen J, Ying G-G, Wei X-D, Liu Y-S, Liu S-S, Hu L-X, et al. 2016. Removal of antibiotics and antibiotic resistance genes from domestic sewage by constructed wetlands: effect of flow configuration and plant species. Sci. Total Environ. 571: 974-982. https://doi.org/10.1016/j.scitotenv.2016.07.085
- Kim M, Guerra P, Theocharides M, Barclay K, Smyth S, Alaee M. 2013. Parameters affecting the occurrence and removal of polybrominated diphenyl ethers in twenty Canadian wastewater treatment plants. Water Res. 47: 2213-2221. https://doi.org/10.1016/j.watres.2013.01.031
- Wang J-Z, Chen T-H, Zhu C-Z, Peng S-C. 2014. Trace organic pollutants in sediments from Huaihe River, China: Evaluation of sources and ecological risk. J. Hydrol. 512: 463-469. https://doi.org/10.1016/j.jhydrol.2014.03.012
- Wang Z, Yang J, Zhang D, Zhou J, Zhang C, Su X, et al. 2014. Composition and structure of microbial communities associated with different domestic sewage outfalls. Genet. Mol. Res. 13: 7542-7552. https://doi.org/10.4238/2014.September.12.21
- Nsenga Kumwimba M, Dzakpasu M, Zhu B, Wang T, Ilunga L, Kavidia Muyembe D. 2017. Nutrient removal in a trapezoidal vegetated drainage ditch used to treat primary domestic sewage in a small catchment of the upper Yangtze River. Water Environ. J. 31: 72-79. https://doi.org/10.1111/wej.12225
- He D, Zhang K, Tang J, Cui X, Sun Y. 2018. Using fecal sterols to assess dynamics of sewage input in sediments along a human-impacted river-estuary system in eastern China. Sci. Total Environ. 636: 787-797. https://doi.org/10.1016/j.scitotenv.2018.04.314
- Liang Z, Siegert M, Fang W, Sun Y, Jiang F, Lu H, et al. 2018. Blackening and odorization of urban rivers: a bio-geochemical process. FEMS Microbiol. Ecol. 94: 10.1093/femsec/fix180.
- Wildi W, Dominik J, Loizeau JL, Thomas RL, Favarger PY, Haller L, et al. 2004. River, reservoir and lake sediment contamination by heavy metals downstream from urban areas of Switzerland. Lakes Reservoir. Res. Manage. 9: 75-87. https://doi.org/10.1111/j.1440-1770.2004.00236.x
- Hu Y, Bai C, Cai J, Dai J, Shao K, Tang X, et al. 2018. Co-occurrence Network reveals the higher fragmentation of the bacterial community in Kaidu River than its tributaries in Northwestern China. Microbes Environ. 33: 127-134. https://doi.org/10.1264/jsme2.ME17170
- Abia ALK, Alisoltani A, Keshri J, Ubomba-Jaswa E. 2018. Metagenomic analysis of the bacterial communities and their functional profiles in water and sediments of the Apies River, South Africa, as a function of land use. Sci. Total Environ. 616: 326-334. https://doi.org/10.1016/j.scitotenv.2017.10.322
- Roberto AA, Van Gray JB, Leff LG. 2018. Sediment bacteria in an urban stream: spatiotemporal patterns in community composition. Water Res. 134: 353-369. https://doi.org/10.1016/j.watres.2018.01.045
- Chen ZF, Ying GG, Liu YS, Zhang QQ, Zhao JL, Liu SS, et al. 2014. Triclosan as a surrogate for household biocides: an investigation into biocides in aquatic environments of a highly urbanized region. Water Res. 58: 269-279. https://doi.org/10.1016/j.watres.2014.03.072
- Yadav R, Goyal B, Sharma R, Dubey S, Minhas P. 2002. Post-irrigation impact of domestic sewage effluent on composition of soils, crops and ground water-A case study. Environ. Int. 28: 481-486. https://doi.org/10.1016/S0160-4120(02)00070-3
- Virsek MK, Hubad B, Lapanje A. 2013. Mercury induced community tolerance in microbial biofilms is related to pollution gradients in a long-term polluted river. Aquat. Toxicol. 144: 208-217. https://doi.org/10.1016/j.aquatox.2013.09.023
- Scholes L, Faulkner H, Tapsell S, Downward S. 2008. Urban rivers as pollutant sinks and sources: a public health concern for recreational river users? Water Air Soil Poll. 8: 543-553. https://doi.org/10.1007/s11267-008-9178-6
- Yang X, Huang S, Wu Q, Zhang R, Liu G. 2013. Diversity and vertical distributions of sediment bacteria in an urban river contaminated by nutrients and heavy metals. Front. Environ. Sci. Eng. 7: 851-859. https://doi.org/10.1007/s11783-013-0569-1
- Moitra M, Leff LG. 2015. Bacterial community composition and function along a river to reservoir transition. Hydrobiologia 747: 201-215. https://doi.org/10.1007/s10750-014-2140-x
- Cebron A, Coci M, Garnier J, Laanbroek HJ. 2004. Denaturing gradient gel electrophoretic analysis of ammonia-oxidizing bacterial community structure in the lower Seine River: impact of Paris wastewater effluents. Appl. Environ. Microbiol. 70: 6726-6737. https://doi.org/10.1128/AEM.70.11.6726-6737.2004
- Kochling T, Sanz JL, Galdino L, Florencio L, Kato MT. 2017. Impact of pollution on the microbial diversity of a tropical river in an urbanized region of northeastern Brazil. Int. Microbiol. 20: 11-24.
- Staley C, Gould TJ, Wang P, Phillips J, Cotner JB, Sadowsky MJ. 2014. Bacterial community structure is indicative of chemical inputs in the Upper Mississippi River. Front. Microbiol. 5: 524.
- Feng B, Li X, Wang J, et al. 2009. Bacterial diversity of water and sediment in the Changjiang estuary and coastal area of the East China Sea. FEMS Microbiol. Ecol. 70: 236-248. https://doi.org/10.1111/j.1574-6941.2009.00772.x
- Mara, D.D. 2004. Domestic wastewater treatment in developing countries. Earthscan Publications, London.
- Chati R. 2004. Effect of domestic sewage on fresh water bivalve molluses from manjara river.
- Avery EL. 1970. Effects of domestic sewage on aquatic insects and salmonids of the East Gallatin River, Montana. Water Res. 4: 165-177. https://doi.org/10.1016/0043-1354(70)90047-3
- Kushwaha VB, Agrahari M. 2014. Effect of domestic sewage on zooplankton community in River Rapti at Gorakhpur, India. World J. Zool. 9: 86-92.
- Wu H, Li Y, Zhang W, Wang C, Wang P, Niu L, et al. 2019. Bacterial community composition and function shift with the aggravation of water quality in a heavily polluted river. J. Environ. Manage 237: 433-441. https://doi.org/10.1016/j.jenvman.2019.02.101
- Kuang J, Huang L, He Z, Chen L, Hua Z, Jia P, et al. 2016. Predicting taxonomic and functional structure of microbial communities in acid mine drainage. ISME J. 10: 1527. https://doi.org/10.1038/ismej.2015.201
- Su Z, Dai T, Tang Y, Tao Y, Huang B, Mu Q, et al. 2018. Sediment bacterial community structures and their predicted functions implied the impacts from natural processes and anthropogenic activities in coastal area. Mar. Pollut. Bull. 131: 481-495. https://doi.org/10.1016/j.marpolbul.2018.04.052
- Langille MG, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA, et al. 2013. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat. Biotechnol. 31: 814-821. https://doi.org/10.1038/nbt.2676
- Barberan A, Bates ST, Casamayor EO, Fierer N. 2014. Using network analysis to explore co-occurrence patterns in soil microbial communities. ISME J. 8: 952.
- Fernandes H, Jungles MK, Hoffmann H, Antonio RV, Costa RH. 2013. Full-scale sequencing batch reactor (SBR) for domestic wastewater: performance and diversity of microbial communities. Bioresour. Technol. 132: 262-268. https://doi.org/10.1016/j.biortech.2013.01.027
- Wang L, Zhang J, Li H, Yang H, Peng C, Peng Z, et al. 2018. Shift in the microbial community composition of surface water and sediment along an urban river. Sci. Total Environ. 627: 600-612. https://doi.org/10.1016/j.scitotenv.2018.01.203
- Kim SJ, Ahn JH, Weon HY, Hong SB, Seok SJ, Kwon SW. 2015. Parasegetibacter terrae sp. nov., isolated from paddy soil and emended description of the genus Parasegetibacter. Int. J. Syst. Evol. Microbiol. 65: 113-116. https://doi.org/10.1099/ijs.0.068692-0
- Keshri J, Ram AP, Sime-Ngando T. 2018. Distinctive patterns in the taxonomical resolution of bacterioplankton in the sediment and pore waters of contrasted freshwater lakes. Microb. Ecol. 75: 662-673. https://doi.org/10.1007/s00248-017-1074-z
- Edgar RC. 2010. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26: 2460-2461. https://doi.org/10.1093/bioinformatics/btq461
- Zhang L, Shen Z, Fang W, Gao G. 2019. Composition of bacterial communities in municipal wastewater treatment plant. Sci. Total Environ. 689: 1181-1191. https://doi.org/10.1016/j.scitotenv.2019.06.432
- Shao J, He Y, Zhang H, Chen A, Lei M, Chen J, et al. 2016. Silica fertilization and nano-MnO 2 amendment on bacterial community composition in high arsenic paddy soils. Appl. Microbiol. Biotechnol. 100: 2429-2437. https://doi.org/10.1007/s00253-015-7131-y
- Team, R. D. C. 2009. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.Available online: http://www.R-project.org (accessed on Feb. 10, 2015).
- Bray JR, Curtis JT. 1957. An ordination of the upland forest communities of southern Wisconsin. Ecol. Monogr. 27: 325-349. https://doi.org/10.2307/1942268
- Ibarbalz FM, Figuerola EL, Erijman L. 2013. Industrial activated sludge exhibit unique bacterial community composition at high taxonomic ranks. Water Res. 47: 3854-3864. https://doi.org/10.1016/j.watres.2013.04.010
- Fan L, Wang Z, Chen M, Qu Y, Li J, Zhou A, et al. 2019. Microbiota comparison of Pacific white shrimp intestine and sediment at freshwater and marine cultured environment. Sci. Total Environ. 657: 1194-1204. https://doi.org/10.1016/j.scitotenv.2018.12.069
- Keshri J, Ram ASP, Colombet J, Perriere F, Thouvenot A, Sime-Ngando T. 2017. Differential impact of lytic viruses on the taxonomical resolution of freshwater bacterioplankton community structure. Water Res. 124: 129-138. https://doi.org/10.1016/j.watres.2017.07.053
- Liu J, Liu X, Wang M, Qiao Y, Zheng Y, Zhang X-H. 2015. Bacterial and archaeal communities in sediments of the north Chinese marginal seas. Microb. Ecol. 70: 105-117. https://doi.org/10.1007/s00248-014-0553-8
- Dong Z, Hong M, Hu H, Wang Y, Zhang D, Wang K. 2018. Effect of excess nitrogen loading on the metabolic potential of the bacteria community in oligotrophic coastal water. Acta Sci. Circumst. 38: 457-466.
- Bordenave S, Goni-Urriza MS, Caumette P, Duran R. 2007. Effects of heavy fuel oil on the bacterial community structure of a pristine microbial mat. Appl. Environ. Microbiol. 73: 6089-6097. https://doi.org/10.1128/AEM.01352-07
- Li Y, Wu H, Shen Y, Wang C, Wang P, Zhang W, et al. 2019. Statistical determination of crucial taxa indicative of pollution gradients in sediments of Lake Taihu, China. Environ. Pollut. 246: 753-762. https://doi.org/10.1016/j.envpol.2018.12.087
- Haller L, Tonolla M, Zopfi J, Peduzzi R, Wildi W, Pote J. 2011. Composition of bacterial and archaeal communities in freshwater sediments with different contamination levels (Lake Geneva, Switzerland). Water Res. 45: 1213-1228. https://doi.org/10.1016/j.watres.2010.11.018
- Mark Ibekwe A, Leddy MB, Bold RM, Graves AK. 2012. Bacterial community composition in low-flowing river water with different sources of pollutants. FEMS Microbiol. Ecol. 79: 155-166. https://doi.org/10.1111/j.1574-6941.2011.01205.x
- Schmeller DS, Loyau A, Bao K, Brack W, Chatzinotas A, Vleeschouwer, FD, et al. 2018. People, pollution and pathogens - Global change impacts in mountain freshwater ecosystems[J]. Sci. Total Environ. 622: 756-763. https://doi.org/10.1016/j.scitotenv.2017.12.006
- MacDonald DD, Ingersoll CG. 2002. A guidance manual to support the assessment of contaminated sediments in freshwater ecosystems. Volume I: An ecosystem-based framework for assessing and managing contaminated sediments. Chicago (IL): U.S. Environmental Protection Agency Great Lakes National Program Office.
- Withers P, Jarvie H. 2008. Delivery and cycling of phosphorus in rivers: a review. Sci. Total Environ. 400: 379-395. https://doi.org/10.1016/j.scitotenv.2008.08.002
- Rui L, Xiao D. 2017. Influences of sediment characteristics and overlying water quality on sediment bacterial communities in a seasonal sandy river. China Environ.l Sci. 37: 4342-4352.
- Wittebolle L, Marzorati M, Clement L, Balloi A, Daffonchio D, Heylen K, et al. 2009. Initial community evenness favours functionality under selective stress. Nature 458: 623-626. https://doi.org/10.1038/nature07840
- Li D, Yang M, Li Z, Qi R, He J, Liu H. 2008. Change of bacterial communities in sediments along Songhua River in Northeastern China after a nitrobenzene pollution event. FEMS Microbiol. Ecol. 65: 494-503. https://doi.org/10.1111/j.1574-6941.2008.00540.x
- Tamaki H, Sekiguchi Y, Hanada S, Nakamura K, Nomura N, Matsumura M, et al. 2005. Comparative analysis of bacterial diversity in freshwater sediment of a shallow eutrophic lake by molecular and improved cultivation-based techniques. Appl. Environ. Microbiol. 71: 2162-2169. https://doi.org/10.1128/AEM.71.4.2162-2169.2005
- Guo X, Lu D, Niu Z, et al. 2018. Bacterial community structure in response to environmental impacts in the intertidal sediments along the Yangtze Estuary, China. Mar Pollut Bull, 126: 141-149. https://doi.org/10.1016/j.marpolbul.2017.11.003
- Sun W, Xia C, Xu M, Guo J, Sun G. 2017. Seasonality affects the diversity and composition of bacterioplankton communities in dongjiang river, a drinking water source of Hong Kong. Front. Microbiol. 8: 1644. https://doi.org/10.3389/fmicb.2017.01644
- Glaeser SP, Kampfer P. 2014. The family sphingomonadaceae. In: Rosenberg E, DeLong E, Lory S, Stackebrandt E, Thompson F (Eds.), The Prokaryotes - Alphaproteobacteria and Betaproteobacteria. Springer, Berlin Heidelberg, pp. 641-707.
- Glaeser SP, Grossart HP, Glaeser J. 2010. Singlet oxygen, a neglected but important environmental factor: short‐term and long‐term effects on bacterioplankton composition in a humic lake. Environ. Microbiol. 12: 3124-3136. https://doi.org/10.1111/j.1462-2920.2010.02285.x
- Rosenberg E. 2014. The Family Chitinophagaceae, pp. 493-495. Ed. Springer Berlin Heidelberg.
- Toth E, Borsodi A. 2014. The Family Nocardioidaceae, pp. 651-694. The Prokaryotes: Actinobacteria, Ed. Springer-Verlag Berlin Heidelberg
- Alvarado P, Huang Y, Wang J, Garrido I, Leiva S. 2018. Phylogeny and bioactivity of epiphytic Gram-positive bacteria isolated from three co-occurring antarctic macroalgae. Antonie Van Leeuwenhoek 111: 1543-1555. https://doi.org/10.1007/s10482-018-1044-6
- von Wintersdorff CJ, Penders J, van Niekerk JM, Mills ND, Majumder S, van Alphen LB, et al. 2016. Dissemination of antimicrobial resistance in microbial ecosystems through horizontal gene transfer. Front. Microbiol. 7: 173.
- Jolibois B, Guerbet M. 2005. Hospital wastewater genotoxicity. Annal. Occup. Hyg. 50: 189-196. https://doi.org/10.1093/annhyg/mei051
- Abed RM, Safi NM, Koster J, De Beer D, El-Nahhal Y, Rullkotter J, et al. 2002. Microbial diversity of a heavily polluted microbial mat and its community changes following degradation of petroleum compounds. Appl. Environ. Microbiol. 68: 1674-1683. https://doi.org/10.1128/AEM.68.4.1674-1683.2002
- Sanchez-Peinado MM, Gonzalez-Lopez J, Martinez-Toledo MV, Pozo C, Rodelas B. 2010. Influence of linear alkylbenzene sulfonate (LAS) on the structure of Alphaproteobacteria, Actinobacteria, and Acidobacteria communities in a soil microcosm. Environ. Sci. Pollut. Res. 17: 779-790. https://doi.org/10.1007/s11356-009-0180-y
- Obernosterer I, Catala P, Lebaron P, West NJ. 2011. Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the Southern Ocean. Limnol. Oceanogr. 56: 2391-2401. https://doi.org/10.4319/lo.2011.56.6.2391
- Wang SY, Sudduth EB, Wallenstein MD, Wright JP, Bernhardt ES. 2011. Watershed urbanization alters the composition and function of stream bacterial communities. PLoS One 6: e22972. https://doi.org/10.1371/journal.pone.0022972
- Thomas F, Hehemann JH, Rebuffet E, Czjzek M, Michel G. 2011. Environmental and gut bacteroidetes: the food connection. Front. Microbiol. 2: 93. https://doi.org/10.3389/fmicb.2011.00093
- Lee JS, Lee KC, Kim KK, Lee B. 2016. Complete genome sequence of the Variibacter gotjawalensis GJW-30T from soil of lava forest, Gotjawal. J. Biotechnol. 218: 64-65. https://doi.org/10.1016/j.jbiotec.2015.11.027
- Zhang B, Xu X, Zhu L. 2017. Structure and function of the microbial consortia of activated sludge in typical municipal wastewater treatment plants in winter. Sci. Rep. 7: 17930. https://doi.org/10.1038/s41598-017-17743-x
- Normand P, Daffonchio D, Gtari M. 2014. The family geodermatophilaceae. The Prokaryotes 2014: 361-379.
- Song W, Qi R, Zhao L, Xue N, Wang L, Yang Y. 2019. Bacterial community rather than metals shaping metal resistance genes in water, sediment and biofilm in lakes from arid northwestern China. Environ. Pollut. 254: 113041. https://doi.org/10.1016/j.envpol.2019.113041
- Liang B, Wang L-Y, Zhou Z, Mbadinga SM, Zhou L, Liu J-F, et al. 2016. High frequency of Thermodesulfovibrio spp. and Anaerolineaceae in association with Methanoculleus spp. in a long-term incubation of n-alkanes-degrading methanogenic enrichment culture. Front. Microbiol. 7: 1431.
- Wang C, Liu S, Zhang Y, Liu B, He F, Xu D, et al. 2018. Bacterial communities and their predicted functions explain the sediment nitrogen changes along with submerged macrophyte restoration. Microb. Ecol. 76: 625-636. https://doi.org/10.1007/s00248-018-1166-4
- Quinonez-Dìaz MdJ, Karpiscak MM, Ellman ED, Gerba CP. 2001. Removal of pathogenic and indicator microorganisms by a constructed wetland receiving untreated domestic wastewater. J. Environ. Sci. Heal A. 36: 1311-1320. https://doi.org/10.1081/ESE-100104880
- Sagy M, Kott Y. 1990. Efficiency of rotating biological contactor in removing pathogenic bacteria from domestic sewage. Water Res. 24: 1125-1128. https://doi.org/10.1016/0043-1354(90)90175-6
- Wong K, Shaw TI, Oladeinde A, Glenn TC, Oakley B, Molina M. 2016. Rapid microbiome changes in freshly deposited cow feces under field conditions. Front. Microbiol. 7: 500.
- Daims H, Maixner F, Lücker S, Stoecker K, Hace K, Wagner M. 2006. Ecophysiology and niche differentiation of Nitrospira-like bacteria, the key nitrite oxidizers in wastewater treatment plants. Water Sci. Technol. 54: 21-27.
- Wang J, Chu L. 2016. Biological nitrate removal from water and wastewater by solid-phase denitrification process. Biotechnol. Adv. 34: 1103-1112. https://doi.org/10.1016/j.biotechadv.2016.07.001
- Moeder M, Carranzadiaz O, Lopezangulo G, Avina R, Chavez-Duran, A, Jomaa S, et al. 2017. Potential of vegetated ditches to manage organic pollutants derived from agricultural runoff and domestic sewage: A case study in Sinaloa (Mexico). Sci. Total Environ. 598: 1106-1115. https://doi.org/10.1016/j.scitotenv.2017.04.149
- Chen Z, Ying G, Liu Y, Zhang Q-Q, Zhao JL, Liu SS, et al. 2014. Triclosan as a surrogate for household biocides: An investigation into biocides in aquatic environments of a highly urbanized region. Water Res. 58: 269-279. https://doi.org/10.1016/j.watres.2014.03.072
- Kawahigashi H, Hirose S, Ohkawa H, Ohkawa Y. 2008. Transgenic rice plants expressing human P450 genes involved in xenobiotic metabolism for phytoremediation. J. Mol. Microbiol. Biotechnol. 15: 212-219. https://doi.org/10.1159/000121332
- Guo G, Tian F, Ding K, Wang L, Liu T, Yang F. 2017. Effect of a bacterial consortium on the degradation of polycyclic aromatic hydrocarbons and bacterial community composition in Chinese soils. Int. Biodeter. Biodegr. 123: 56-62. https://doi.org/10.1016/j.ibiod.2017.04.022
- Chang BV, Liu JH, Liao CS. 2014. Aerobic degradation of bisphenol-A and its derivatives in river sediment. Environ. Technol. 35: 416-424. https://doi.org/10.1080/09593330.2013.831111
- Kang J-H, Kondo F. 2002. Bisphenol A degradation by bacteria isolated from river water. Arch. Environ. Contam. Toxicol. 43: 0265-0269. https://doi.org/10.1007/s00244-002-1209-0