References
- Feng Y, Wang J, Bai Z, Reading L. 2019. Effects of surface coal mining and land reclamation on soil properties: a review. Earth-Sci. Rev. 191: 12-25. https://doi.org/10.1016/j.earscirev.2019.02.015
- Bao N, Wu L, Ye B, Yang K, Zhou W. 2017. Assessing soil organic matter of reclaimed soil from a large surface coal mine using a field spectroradiometer in laboratory. Geoderma 288: 47-55. https://doi.org/10.1016/j.geoderma.2016.10.033
- Guo A, Zhao Z, Zhang P, Yang Q, Li Y, Wang G. 2019. Linkage between soil nutrient and microbial characteristic in an opencast mine, China. Sci. Total Environ. 671: 905-913. https://doi.org/10.1016/j.scitotenv.2019.03.065
- Liu X, Bai Z, Zhou W, Cao Y, Zhang G. 2017. Changes in soil properties in the soil profile after mining and reclamation in an opencast coal mine on the Loess Plateau, China. Ecol. Eng. 98: 228-239. https://doi.org/10.1016/j.ecoleng.2016.10.078
- Maji D, Misra P, Singh S, Kalra A. 2017. Humic acid rich vermicompost promotes plant growth by improving microbial community structure of soil as well as root nodulation and mycorrhizal colonization in the roots of Pisum sativum. Appl. Soil Ecol. 110: 97-108. https://doi.org/10.1016/j.apsoil.2016.10.008
- Cao Y, Wang B, Guo H, Xiao H, Wei T. 2017. The effect of super absorbent polymers on soil and water conservation on the terraces of the loess plateau. Ecol. Een. 102: 270-279. https://doi.org/10.1016/j.ecoleng.2017.02.043
- Fernando TN, Ariadurai SA, Disanayaka CK, Kulathunge S, Aruggoda AGB. 2017. Development of radiation grafted super absorbent polymers for agricultural applications. Energy Procedia 127: 163-177. https://doi.org/10.1016/j.egypro.2017.08.106
- Yang L, Yang Y, Chen Z, Guo C, Li S. 2014. Influence of super absorbent polymer on soil water retention, seed germination and plant survivals for rocky slopes eco-engineering. Ecol. Eng. 62: 27-32. https://doi.org/10.1016/j.ecoleng.2013.10.019
- Liu X, Zhang A, Ji C, Joseph S, Bian R, Li L, et al. 2013. Biochar's effect on crop productivity and the dependence on experimental conditionsa meta-analysis of literature data. Plant Soil 373: 583-594. https://doi.org/10.1007/s11104-013-1806-x
- Cao X, Ma L, Gao B. 2009. Dairy-Manure derived biochar effectively sorbs lead and atrazine. Environ. Sci. Technol. 43: 3285-3291. https://doi.org/10.1021/es803092k
- Lehmann J, Rillig MC, Thies J, Masiello CA, Hockaday WC, Crowley D. 2011. Biochar effects on soil biota - a review. Soil Biol. Biochem. 43: 1812-1836. https://doi.org/10.1016/j.soilbio.2011.04.022
- Zhu X, Chen B, Zhu L, Xing B. 2017. Effects and mechanisms of biochar-microbe interactions in soil improvement and pollution remediation: a review. Environ. Pollut. 227: 98-115. https://doi.org/10.1016/j.envpol.2017.04.032
- Akmal M, Maqbool Z, Khan KS, Hussain Q, Ijaz SS, Iqbal M, et al. 2019. Integrated use of biochar and compost to improve soil microbial activity, nutrient availability, and plant growth in arid soil. Arab. J. Geosci. 12: 232. https://doi.org/10.1007/s12517-019-4414-0
- Madhavi P, Sailaja V, Ram PT, Hussain SA. 2015. Effect of fertilizers, biochar and humic acid on soil enzymes at ferment stages. Int. J. Curr. Res. 12: 23871-23875
- Gregorutti VC, Caviglia OP. 2019. Impact of crop aerial and root biomass inputs on soil nitrifiers and cellulolytic microorganisms. Soil Till. Res. 191: 85-97. https://doi.org/10.1016/j.still.2019.03.018
- Dubey RK, Dubey PK, Abhilash PC. 2019. Sustainable soil amendments for improving the soil quality, yield and nutrient content of Brassica juncea (L.) grown in different agroecological zones of eastern Uttar Pradesh, India. Soil Till. Res. 195: 104418. https://doi.org/10.1016/j.still.2019.104418
- Menon RR, Kumari S, Kumar P, Verma A, Krishnamurthi S, Rameshkumar N. 2019. Sphingomonas pokkalii sp. nov., a novel plant associated rhizobacterium isolated from a saline tolerant pokkali rice and its draft genome analysis. Syst. Appl. Microbiol. 42: 334-342. https://doi.org/10.1016/j.syapm.2019.02.003
- Zhou L, Monreal CM, Xu S, McLaughlin NB, Zhang H, Hao G, et al. 2019. Effect of bentonite-humic acid application on the improvement of soil structure and maize yield in a sandy soil of a semi-arid region. Geoderma 338: 269-280. https://doi.org/10.1016/j.geoderma.2018.12.014
- Pukalchik M, Mercl F, Terekhova V, Tlustos P. 2018. Biochar, wood ash and humic substances mitigating trace elements stress in contaminated sandy loam soil: evidence from an integrative approach. Chemosphere 203: 228-238. https://doi.org/10.1016/j.chemosphere.2018.03.181
- Fan R, Luo J, Yan S, Zhou Y, Zhang Z. 2015. Effects of biochar and super absorbent polymer on substrate properties and water spinach growth. Pedosphere 25: 737-748. https://doi.org/10.1016/S1002-0160(15)30055-2
- Xu S, Wang B, Li Y, Jiang D, Zhou Y, Ding A, et al. 2020. Ubiquity, diversity, and activity of comammox Nitrospira in agricultural soils. Sci. Total Environ. 706: 135684. https://doi.org/10.1016/j.scitotenv.2019.135684
- Plante AF, Conant RT, Stewart CE, Paustian K, Six J. 2006. Impact of soil texture on the distribution of soil organic matter in physical and chemical fractions. Soil. Sci. Soc. AM. J. 70: 287-296. https://doi.org/10.2136/sssaj2004.0363
- Gasmi I, Aljoumani B, Sànchez-Espigares JA, Mechergui M, Moussa M. 2019. A linear mixed effect (LME) model for soil nutrients and soil salinity changes based on two localized irrigation techniques (drip irrigation and buried diffuser). Arab. J. Geosci. 12: 356. https://doi.org/10.1007/s12517-019-4400-6
- Guo A, Zhao Z, Zhang P, Yang Q, Li Y, Wang G. 2019. Linkage between soil nutrient and microbial characteristic in an opencast mine, China. Sci. Total Environ. 671: 905-913. https://doi.org/10.1016/j.scitotenv.2019.03.065
- Six J, Conant RT, Paul EA, Paustian K. 2002. Stabilization mechanisms of soil organic matter: implications for C-saturation of soils. Plant Soil 241: 155-176. https://doi.org/10.1023/A:1016125726789
- Tian L, Zhao L, Wu X, Hu G, Fang H, Zhao Y, et al. 2019. Variations in soil nutrient availability across Tibetan grassland from the 1980s to 2010s. Geoderma 338: 197-205. https://doi.org/10.1016/j.geoderma.2018.12.009
- Prakash K, Sridharan A, Thejas HK, Swaroop HM. 2012. A simplified approach of determining the specific gravity of soil solids. Geotech. Geol. Eng. 30: 1063-1067. https://doi.org/10.1007/s10706-012-9521-6
- Holthusen D, Brandt AA, Reichert JM, Horn R. 2018. Soil porosity, permeability and static and dynamic strength parameters under native forest/grassland compared to no-tillage cropping. Soil Till. Res. 177: 113-124. https://doi.org/10.1016/j.still.2017.12.003
- Neves CSVJ, Feller C, Guimarães MF, Medina CC, Tavares Filho J, Fortier M. 2003. Soil bulk density and porosity of homogeneous morphological units identified by the cropping profile method in clayey oxisols in Brazil. Soil Till. Res. 71: 109-119. https://doi.org/10.1016/S0167-1987(03)00023-0
- Amato KR, Yeoman CJ, Kent A, Righini N, Carbonero F, Estrada A, et al. 2013.Habitat degradation impacts black howler monkey (Alouatta pigra) gastrointestinal microbiomes. ISME J. 7: 1344-1353. https://doi.org/10.1038/ismej.2013.16
- Mori H, Maruyama F, Kato H, Toyoda A, Dozono A, Ohtsubo Y, et al. 2014. Design and experimental application of a novel non-degenerate universal primer set that amplifies prokaryotic 16S rRNA genes with a low possibility to amplify eukaryotic rRNA genes. DNA Res. 21: 217-227. https://doi.org/10.1093/dnares/dst052
- Jorge LC. Cantero M. 2003. Soil bulk density and penetration resistance under different tillage and crop management systems and their relationship with barley root growth. Agron. J. 95: 526-536. https://doi.org/10.2134/agronj2003.5260
- Dahal B, NandaKafle G, Perkins L, Brozel VS. 2017. Diversity of free-Living nitrogen fixing Streptomyces in soils of the badlands of South Dakota. Microbiol. Res. 195: 31-39. https://doi.org/10.1016/j.micres.2016.11.004
- Joshi V, Suyal A, Srivastava A, Srivastava PC. 2019. Role of organic amendments in reducing leaching of sulfosulfuron through wheat crop cultivated soil. Emerg. Contam. 5: 4-8. https://doi.org/10.1016/j.emcon.2018.12.002
- Coy RM, Held DW, Kloepper JW. 2019. Rhizobacterial colonization of bermudagrass by Bacillus spp. in a Marvyn loamy sand soil. Appl. Soil Ecol. 141: 10-17. https://doi.org/10.1016/j.apsoil.2019.04.018
- DeMing J, ChengYou C, Ying Z, ZhenBo C, XiaoShu H. 2014. Plantations of native shrub species restore soil microbial diversity in the Horqin Sandy Land, northeastern China. J. Arid. Land 6: 445-453. https://doi.org/10.1007/s40333-013-0205-8
- Volikov AB, Kholodov VA, Kulikova NA, Philippova OI, Ponomarenko SA, Lasareva EV, et al. 2016 Silanized humic substances act as hydrophobic modifiers of soil separates inducing formation of water-stable aggregates in soils. CATENA 137: 229-236. https://doi.org/10.1016/j.catena.2015.09.022
- Janus A, Pelfrene A, Heymans S, Deboffe C, Douay F, Waterlot C. 2015. Elaboration, characteristics and advantages of biochars for the management of contaminated soils with a specific overview on Miscanthus biochars. J Environ. Manage. 162: 275-289. https://doi.org/10.1016/j.jenvman.2015.07.056
- Riyazi S, Kevern JT, Mulheron M. 2017. Super absorbent polymers (SAPs) as physical air entrainment in cement mortars. Constr. Build. Mater. 147: 669-676. https://doi.org/10.1016/j.conbuildmat.2017.05.001
- Ciarkowska K, Solek-Podwika K, Filipek-Mazur B, Tabak M. 2017. Comparative effects of lignite-derived humic acids and FYM on soil properties and vegetable yield. Geoderma 303: 85-92. https://doi.org/10.1016/j.geoderma.2017.05.022
- Laird DA, Fleming P, Davis DD, Horton R, Wang B, Karlen DL. 2010. Impact of biochar amendments on the quality of a typical Midwestern agricultural soil. Geoderma 158: 443-449. https://doi.org/10.1016/j.geoderma.2010.05.013
- Zhang J, Wei Y, Liu J, Yuan J, Liang Y, Ren J, et al. 2019. Effects of maize straw and its biochar application on organic and humic carbon in water-stable aggregates of a Mollisol in Northeast China: a five-year field experiment. Soil Till. Res. 190: 1-9. https://doi.org/10.1016/j.still.2019.02.014
- Huang W, Liu Z, Zhou C, Yang X. 2020. Enhancement of soil ecological self-repair using a polymer composite material. CATENA 188: 104443. https://doi.org/10.1016/j.catena.2019.104443
- Li Z, Rui Z, Zhang D, Feng X, Lu H, Shen S, et al. 2019. Macroaggregates as biochemically functional hotspots in soil matrix: evidence from a rice paddy under long-term fertilization treatments in the Taihu Lake Plain, eastern China. Appl. Soil Ecol. 138: 262-273. https://doi.org/10.1016/j.apsoil.2019.01.013
- Bai Y, Wu J, Clark CM, Naeem S, Pan Q, Huang J, et al. 2010. Tradeoffs and thresholds in the effects of nitrogen addition on biodiversity and ecosystem functioning: evidence from inner Mongolia Grasslands. Global Change Biol. 16: 358-372. https://doi.org/10.1111/j.1365-2486.2009.01950.x
- Mack MC, Schuur EAG, Bret-Harte MS, Shaver GR, Chapin FS. 2004. Ecosystem carbon storage in arctic tundra reduced by long-term nutrient fertilization. Nature 431: 440-443. https://doi.org/10.1038/nature02887
- Chen J, Gong J, Xu M. 2020. Implications of continuous and rotational cropping practices on soil bacterial communities in pineapple cultivation. Eur. J. Soil Biol. 97: 103172. https://doi.org/10.1016/j.ejsobi.2020.103172
- Chen C, Zhang J, Lu M, Qin C, Chen Y, Yang L, et al. 2016. Microbial communities of an arable soil treated for 8 years with organic and inorganic fertilizers. Biol. Fert. Soils 52: 455-467. https://doi.org/10.1007/s00374-016-1089-5
- Soman C, Li D, Wander MM, Kent AD. 2017. Long-term fertilizer and crop-rotation treatments differentially affect soil bacterial community structure. Plant Soil 413: 145-159. https://doi.org/10.1007/s11104-016-3083-y
- Hu J, Wu J, Qu X, Li J. 2018. Effects of organic wastes on structural characterizations of humic acid in semiarid soil under plastic mulched drip irrigation. Chemosphere 200: 313-321. https://doi.org/10.1016/j.chemosphere.2018.02.128
- Lehmann J, Rillig MC, Thies J, Masiello CA, Hockaday WC, Crowley D. 2011. Biochar effects on soil biota - a review. Soil Biol. Biochem. 43: 1812-1836. https://doi.org/10.1016/j.soilbio.2011.04.022
- Gul S, Whalen JK, Thomas BW, Sachdeva V, Deng H. 2015. Physico-chemical properties and microbial responses in biochar-amended soils: mechanisms and future directions. Agr. Ecosyst. Environ. 206: 46-59. https://doi.org/10.1016/j.agee.2015.03.015
-
Luo Y, Durenkamp M, De Nobili M, Lin Q, Devonshire BJ, Brookes PC. 2013. Microbial biomass growth, following incorporation of biochars produced at
$350^{\circ}C$ or$700^{\circ}C$ , in a silty-clay loam soil of high and low pH. Soil Biol. Biochem. 57: 513-523. https://doi.org/10.1016/j.soilbio.2012.10.033 - Zhang Q, Shamsi IH, Xu D, Wang G, Lin X, Jilani G, et al. 2012. Chemical fertilizer and organic manure inputs in soil exhibit a vice versa pattern of microbial community structure. Appl. Soil Ecol. 57: 1-8. https://doi.org/10.1016/j.apsoil.2012.02.012
- Zhang L, Jing Y, Xiang Y, Zhang R, Lu H. 2018. Responses of soil microbial community structure changes and activities to biochar addition: a meta-analysis. Sci. Total Environ. 643: 926-935. https://doi.org/10.1016/j.scitotenv.2018.06.231
- Wu FZ, Bao WK, Zhou ZQ, Wu N. 2009. Carbon accumulation, nitrogen and phosphorus use efficiency of Sophora davidii seedlings in response to nitrogen supply and water stress. J. Arid. Environ. 73: 1067-1073. https://doi.org/10.1016/j.jaridenv.2009.06.007
- Canellas LP, Olivares FL, Canellas NOA, Mazzei P, Piccolo A. 2019. Humic acids increase the maize seedlings exudation yield.Chem. Biol. Technol. Agric. 6: 3. https://doi.org/10.1186/s40538-018-0139-7
- Puglisi E, Pascazio S, Suciu N, Cattani I, Fait G, Spaccini R, et al. 2013. Rhizosphere microbial diversity as influenced by humic substance amendments and chemical composition of rhizodeposits. J. Geochem. Explor. 129: 82-94. https://doi.org/10.1016/j.gexplo.2012.10.006
- Nelissen V, Rutting T, Huygens D, Staelens J, Ruysschaert G, Boeckx P. 2012. Maize biochars accelerate short-term soil nitrogen dynamics in a loamy sand soil. Soil Biol. Biochem. 55: 20-27. https://doi.org/10.1016/j.soilbio.2012.05.019
- Tian J, Wang J, Dippold M, Gao Y, Blagodatskaya E, Kuzyakov Y. 2016. Biochar affects soil organic matter cycling and microbial functions but does not alter microbial community structure in a paddy soil. Sci Total Environ. 556: 89-97. https://doi.org/10.1016/j.scitotenv.2016.03.010