References
- Budiman, Sutanto Edward; Lee, Suk-Ho. Virtual Reality Image Shooting for Single Person Broadcasting with Multiple Smartphones. International Journal of Internet, Broadcasting and Communication, 2019, 11.2: 43-49. DOI: https://doi.org/10.7236/IJIBC.2019.11.2.43
- Yi, Chuho; Cho, Jungwon. A Real-time Plane Estimation in Virtual Reality Using a RGB-D Camera in Indoors. Journal of Digital Convergence, 2016, 14.11: 319-324. DOI: https://doi.org/10.14400/JDC.2016.14.11.319
- Kim, Jinsoo; Cho, Jungho. YOLO-based real-time object detection through RGB image and LiDAR point cloud synthesis. Journal of the Korean Society of Information Technology, 2019, 17.8: 93-105. DOI: https://doi.org/10.14801/jkiit.2019.17.8.93
- Kim, J.; Kwon, K. K.; Lee, Su In. Trends and applications on LiDAR sensor technology. Electronics and Telecommunications Trends, 2012, 27.6: 134-143.
- Premebida, Cristiano, et al. High-resolution lidar-based depth mapping using bilateral filter. In: 2016 IEEE 19th international conference on intelligent transportation systems (ITSC). IEEE, 2016. p. 2469-2474. DOI: https://doi.org/10.1109/ITSC.2016.7795953
- Robinson, Rod, et al. Infrared differential absorption Lidar (DIAL) measurements of hydrocarbon emissions. Journal of environmental monitoring, 2011, 13.8: 2213-2220. DOI: https://doi.org/10.1039/c0em00312c
- Scarselli, Franco, et al. The graph neural network model. IEEE Transactions on Neural Networks, 2008, 20.1: 61- 80. DOI: https://doi.org/10.1109/TNN.2008.2005605
- Teney, Damien; Liu, Lingqiao; Van Den Hengel, Anton. Graph-structured representations for visual question answering. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2017. p. 1-9. DOI: https://doi.org/10.1109/CVPR.2017.344
- Kwon, Soon Chul, et al. A Study on Depth Information Acquisition Improved by Gradual Pixel Bundling Method at TOF Image Sensor. International Journal of Internet, Broadcasting and Communication, 2015, 7.1: 15-19. DOI: https://doi.org/10.7236/IJIBC.2015.7.1.15
- Shi, Weijing; Rajkumar, Raj. Point-gnn: Graph neural network for 3d object detection in a point cloud. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020. p. 1711-1719.
- A project of Karlsruhe Institute of Technology and Toyota Technological Institute at Chicago, "The KITTI Vision Benchmark Suite", http://www.cvlibs.net/datasets/kitti/
- Kim, Jeong-Hwan; Shin, Yong-Hyeon. A Study on Deep Learning-based Pedestrian Detection and Alarm System. The Journal of The Korea Institute of Intelligent Transport Systems, 2019, 18.4: 58-70. DOI: https://doi.org/10.12815/kits.2019.18.4.58