DOI QR코드

DOI QR Code

Various physiological effects from fruiting body extracts of Phellinus baumii

장수진흙버섯 자실체 추출물의 다양한 생리활성 효과

  • Yoon, Ki Nam (Department of Clinical Laboratory Science, Ansan University) ;
  • Lee, Tae Soo (Division of Life Sciences, Incheon National University)
  • Received : 2020.09.01
  • Accepted : 2020.09.23
  • Published : 2020.09.30

Abstract

Phellinus baumii, a white-rot fungus, has been used for centuries as folk medicine in China, Japan, and Korea. This study aimed to evaluate the in vitro anti-diabetic, and anti-cholinesterase, and in vivo anti-inflammatory effects of the fruiting bodies of P. baumii. The methanol (ME) and hot water (HE) extracts (2.0 mg/mL) of P. baumii fruiting bodies suppressed α-amylase activity, exactly 61.33%, and 65.00%, respectively; of note, acarbose, the positive control, inhibited 93.33% of the α-amylase activity. Moreover, the ME and HE (2.0 mg/mL) inhibited 89.67% and 91.00%, respectively, of the activity of α-glucosidase activity, whereas the same concentration of acarbose suppressed 84.67% of the α-glucosidase activity. The ME and HE (1.0 mg/mL) also inhibited 96.05% and 94.58%, respectively, of the acetylcholinesterase (AChE) activity; galanthamine, the positive control, led to an inhibition of 81.12%. The butyrylcholinesterase (BChE) activity was also inhibited by ME and HE (1.0 mg/mL; 91.05% and 82.27%, respectively); of note, the same concentration of galanthamine suppressed 81.12% of the BChE activity. The production of NO in LPS-induced RAW 264.7 macrophages was significantly suppressed by both ME and HE treatments. Importantly, the carrageenan-activated rat hind-paw edema was significantly reduced 2-6 h after ME administration (50 mg/mL). Taken together, the results suggest that the fruiting bodies of P. baumii have α-amylase, α-glucosidase, α-cholinesterase, and anti-inflammatory activities, and, therefore, may be good natural sources for the promotion of human health.

본 연구에서는 장수진흙버섯 자실체로부터 메탄올과 열수를 이용해 추출한 물질의 항당뇨, 항콜린에스테라아제, 항염증 효과를 탐색하였다. 항당뇨 실험에서 α-amylase 효소에 대한 메탄올과 열수 추출물의 저해 효과는 1.0~2.0 mg/ml의 농도에서 각각 50.67~61.33%와 52.67~65.00%를 보여 양성대조군인 acarbose의 83.67~96.33%에 비해 크게 낮았으나 α-glucosidase에 대한 메탄올과 열수 추출물의 1.0~2.0 mg/ml의 농도에서의 저해 효과는 각각 74.33~89.67%와 75.67~91.00%를 보여 53.67%와 84.67%를 보인 양성대조군 acarbose에 비해 유의하게 높아 탄수화물 분해효소인 α-glucosidase에 대한 저해 효과가 특이적으로 높았다. 메탄올과 열수 추출물의 아세틸콜린 에스테라아제에 대한 저해 효과는 1.0 mg/ml의 농도에서 각각 96.05%와 94.58%를 보여 양성대조군인 galanthamine (97.80%)과 유사하였으나 butyrylcholinesterase에 대한 저해효과는 1.0 mg/ml의 농도에서 각각 91.05%와 82.27%를 보여 galanthamine의 저해 효과 81.12%에 비해 유의하게 높았다. 염증 저해 효과 실험에서 RAW 264.7 대식세포가 배양되고 있는 배지에 메탄올과 열수 추출물을 각각 전처리 후 염증 매개 물질인 LPS를 1 ㎍/ml 처리하여 24시간 배양 후 NO 생성의 저해 효과를 조사한 결과 각각의 추출물 농도가 증가함에 따라 생성된 NO의 양도 점차 유의하게 감소하는 경향을 나타내었다. Carrageenan의 주사에 의해 흰쥐의 뒷발에 유도된 부종 저해실험에서는 투여한 메탄올 추출물의 농도가 증가함에 따라 뒷발에 유발된 부종의 용적도 농도 의존적으로 점차 감소하는 추세를 나타냈다. 따라서 장수진흙버섯의 자실체에 함유된 물질은 항당뇨, 항콜린에스테라아제 및 항염증 효과를 지니고 있어서 천연 건강식품으로의 개발 가능성이 높은 것으로 사료 된다.

Keywords

References

  1. Ellman GL, Courtney KD, Andres VJ, Featherstone RM. 1961. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7: 88-95. https://doi.org/10.1016/0006-2952(61)90145-9
  2. Fayuk D, Yakel JL. 2004. Regulation of nicotinic acetylcholine receptor channel function by acetylcholinesterase inhibitors in rat hippocampal CA1 interneurons. Mol Pharmacol 66: 658-666. https://doi.org/10.1124/mol.104.000042
  3. Heinrich M. 2004. Snowdrops: the heralds of spring and a modern drug for Alzheimer's disease. Pharmaceut J 273: 905-906.
  4. Hou YC, Janczuk A, Wang PG. 1999. Current trends in the development of nitric oxide donors. Curr Pharmaceut Design 5(6): 417-441.
  5. Kim KH, Roh SG, Li CR, Jin CF, Kim A, Choi WC. 2008. Anti-diabetic effects of banaba leaf extracts (Lagerstroemia speciosa Pers.) through solvents. J Life Sci 18: 1305-1311. https://doi.org/10.5352/JLS.2008.18.9.1305
  6. Kim HS, Kim TW, Kim DJ, Lee JS, Kim KK, Choe M. 2013. Antioxidant activities and $\alpha$-glucosidase inhibitory effect of water extracts from medicinal plants. Korean J Med Crop Sci 21: 197-203. https://doi.org/10.7783/KJMCS.2013.21.3.197
  7. Korhonen R, Lahti A, Kankaanranta H, Moilanen E. 2005. Nitric oxide production and signaling in inflammation. Curr Drug Targets Inflamm Allergy 4: 471-479. https://doi.org/10.2174/1568010054526359
  8. Kwon YJ, Kim MH, Choi, JS, Lee TS. 2014. Free radical scavenging, anti-inflammatory and melanin synthesis inhibitory activities of Gloeostereum incarnatum. J Mushrooms 12: 107-116. https://doi.org/10.14480/JM.2014.12.2.107
  9. Lee KH, Kwon HJ, Chun SS, Kim JH, Cho YJ, Cha WS. 2006. Biological activities of extracts from Phellinus linteus. J Korean Soc Appl Biol Chem 49: 298-303.
  10. Lee SJ, Song, EJ, Kim KBWR, Lee CJ, Jung JY, Kwak JH, Choi MK, Kim MJ, Kim TW, Ahn DH. 2010. Inhibitory effects of Sargassum thunbergii ethanol extract against $\alpha$-amylase. Kor J Fish Aquat Sci 43: 648-653. https://doi.org/10.5657/kfas.2010.43.6.648
  11. Mahmud T, Tornus I, Egelkrout E, Wolf E, Uy C, Floss HG, Lee SS. 1999. Biosynthetic studies on the $\alpha$-glucosidase inhibitor acarbose in Actinoplanes sp.; 2-epi-5-epi-valiolone is the direct precursor of the valienamine moiety. J Amer Chem Soc 121: 6973-6983. https://doi.org/10.1021/ja991102w
  12. Mosmann T. 1983. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65: 55-63. https://doi.org/10.1016/0022-1759(83)90303-4
  13. Nguyen TK, Lee MW, Yoon KN, Kim HY, Jin GH, Choi JH, Im KH, Lee TS. 2014. In vitro antioxidant, anti-diabetic, anti-cholinesterase, tyrosinase and nitric oxide inhibitory potential of fruiting bodies of Coprinellus micaceus. J Mushrooms 12: 330-340. https://doi.org/10.14480/JM.2014.12.4.330
  14. Park WH, Lee HD. 1999. Korean medicinal mushroom pictorial book. Kyohak Publishing Co, Ltd, Seoul, Korea.
  15. Ryu JH, Ahn H, Kim JY, Kim YK. 2003. Inhibitory activity of plant extracts on nitric oxide synthesis in LPS-activated macrophage. Phytother Res 17: 485-489. https://doi.org/10.1002/ptr.1180
  16. Shim SM, Im KH, Kim JW, Shim MJ, Lee MW, Lee TS. 2003. Studies on immuno-modulatory and antitumor effects of crude polysaccharides extracted from Paecilomyces sinclairii. Kor J Mycol 31: 155-160. https://doi.org/10.4489/KJM.2003.31.3.155
  17. Wasser SP, Weis AL. 1999. Medicinal properties of substances occurring in higher basidiomycete mushrooms: current perspectives (Review). Int J Med Mushrooms 1: 31-62. https://doi.org/10.1615/IntJMedMushrooms.v1.i1.30
  18. Winter CA, Risley EA, Nuss GW. 1962. Carrageenan induced edema in the hind paw of rat as an assay for antiinflammatory activity. Proc Soc Exp Biol Med 111: 544-547. https://doi.org/10.3181/00379727-111-27849
  19. Worthington V. 1993. Worthington Enzyme Manual. Biochemical Corporation, Freehold, New Jersey, USA.
  20. Yoon KN, Jang HS. 2018. Anti-xanthine oxidase, anti-cholinesterase, and anti-inflammatory activities of fruiting bodies of Phellinus gilvus. Korean J Clin Lab Sci 50: 225-235. https://doi.org/10.15324/kjcls.2018.50.3.225