DOI QR코드

DOI QR Code

MoSe2가 Cu(In,Ga)Se2 박막 태양전지 모듈의 ZnO/Mo 접합의 접촉 저항에 미치는 영향

Effect of MoSe2 on Contact Resistance of ZnO/Mo Junction in Cu(In,Ga)Se2 Thin Film Solar Module

  • 조성욱 (화학공학과, 영남대학교) ;
  • 김아현 (화학공학과, 영남대학교) ;
  • 이경아 (화학공학과, 영남대학교) ;
  • 전찬욱 (화학공학과, 영남대학교)
  • Cho, Sung Wook (Department of Chemical Engineering, Yeoungnam University) ;
  • Kim, A Hyun (Department of Chemical Engineering, Yeoungnam University) ;
  • Lee, Gyeong A (Department of Chemical Engineering, Yeoungnam University) ;
  • Jeon, Chan Wook (Department of Chemical Engineering, Yeoungnam University)
  • 투고 : 2020.07.09
  • 심사 : 2020.08.14
  • 발행 : 2020.09.30

초록

In this paper, the effect of MoSe2 on the contact resistance (RC) of the transparent conducting oxide (TCO) and Mo junction in the scribed P2 region of the Cu(In,Ga)Se2 (CIGS) solar module was analyzed. The CIGS/Mo junction becomes ohmic-contact by MoSe2, so the formation of the MoSe2 layer is essential. However, the CIGS solar module has a TCO/MoSe2/Mo junction in the P2 region due to structural differences from the cell. The contact resistance (RC) of the P2 region was calculated using the transmission line method, and MoSe2 was confirmed to increase RC of the TCO/Mo junction. B doped ZnO (BZO) was used as TCO, and when BZO/MoSe2 junction was formed, conduction band offset (CBO) of 0.6 eV was generated due to the difference in their electron affinities. It is expected that this CBO acts as a carrier transport barrier that disturbs the flow of current, resulting in increased RC. In order to reduce the RC caused by CBO, MoSe2 must be made thin in a CIGS solar module.

키워드

참고문헌

  1. Bouabdelli, M. W., Rogti, F., Maache, M., Rabehi, A., "Performance enhancement of CIGS thin-film solar cell," Optik, Vol. 216, 164948, 2020. https://doi.org/10.1016/j.ijleo.2020.164948
  2. Avancini, E., Feurer, T., Bissig, B., Losio, P. A., “Refractive indices of layers and optical simulations of $Cu(In,Ga)Se_2$ solar cells,” Sci. Technol. Adv. Mater., Vol. 19, No. 1, pp. 396-410, 2018. https://doi.org/10.1080/14686996.2018.1458579
  3. Siebentritt, S., "Wide gap chalcopyrites: material properties and solar cells," Thin Soild Films, Vol. 403-404, pp. 1-8, 2002. https://doi.org/10.1016/S0040-6090(01)01525-5
  4. Chantana, J., Murata, M., Higuchi, T., Watanabe, T., Teraji, S., Kawamura, K., Minemoto, T., "Determination of opencircuit voltage in $Cu(In,Ga)Se_2$ solar cell by averaged Ga/(In + Ga) near its absorber surface," J. Appl. Phys, Vol. 114, No. 8, 084501, 2013. https://doi.org/10.1063/1.4819087
  5. Powalla, M., Cemernjak, M., Eberhardt, J., Kessler, F., Kniese, R., Mohring, H. D., Dimmler, B., “Large-area CIGS modules: Pilot line production and new developments,” Sol. Energy Mater. Sol. Cells, Vol. 90, No. 18-19, pp. 3158-3164, 2006. https://doi.org/10.1016/j.solmat.2006.06.052
  6. Powalla, M., Dimmler, B., "Scaling up issues of CIGS solar cells," Thin Solid Films, Vol. 361-362, pp. 540-546, 2000. https://doi.org/10.1016/S0040-6090(99)00849-4
  7. Nishiwaki, S., Burn, A., Buecheler, S., Muralt, M., Pilz, S., Romano, V., Witte, R., Krainer, L., Spühler, G. J., Tiwari, A. N., "A monolithically integrated high‐efficiency $Cu(In,Ga)Se_2$ mini‐module structured solely by laser," Prog Photovolt, Vol. 23, pp. 1908-1915, 2015. https://doi.org/10.1002/pip.2583
  8. Gecys, P., Markauskas, E., Nishiwaki, S., Buecheler, S., Loor, R. D., Burn, A., Romano, V., Raciukaitis, G., "CIGS thin-film solar module processing: case of high-speed laser scribing," Sci. Rep., Vol. 7, 40502, 2017. https://doi.org/10.1038/srep40502
  9. Pethe, S. A., Takahashi, E., Kaul, A., Dhere, N. G., "Effect of sputtering process parameters on film properties of molybdenum back contact," Sol. Energy Mater. Sol. Cells, Vol. 100, pp. 1-5, 2012. https://doi.org/10.1016/j.solmat.2011.11.038
  10. Jubault, M., Ribeaucourt, L., Chassaing, E., Renou, G., Lincot, D., Donsanti, F., "Optimization of molybdenum thin films for electrodeposited CIGS solar cells," Sol. Energy Mater. Sol. Cells, Vol. 95, pp. S26-S31, 2011. https://doi.org/10.1016/j.solmat.2010.12.011
  11. Wada, T., Kohara, N., Nishiwaki, S., Negami., T., “Characterization of the $Cu(In,Ga)Se_2$/Mo interface in CIGS solar cells,” Thin Solid Films, Vol. 387, No. 1-2, pp. 118-122, 2001. https://doi.org/10.1016/S0040-6090(00)01846-0
  12. Kohara, N., Nishiwaki, S., Hashimoto. Y., Negami, T., Wada, T., “Electrical properties of the $Cu(In,Ga)Se_2$/$MoSe_2$/Mo structure,” Sol. Energy Mater. Sol. Cells, Vol. 67, No. 1-4, pp. 209-215, 2001. https://doi.org/10.1016/S0927-0248(00)00283-X
  13. Abou-Ras, D., Kostorz, G., Bremaud, D., Kälin, M., Kurdesau, F. V., Tiwari A. N., Döbelic, M., "Formation and characterisation of $MoSe_2$ for $Cu(In,Ga)Se_2$ based solar cells," Thin Solid Films, Vol. 480-481, pp. 433-438, 2005. https://doi.org/10.1016/j.tsf.2004.11.098
  14. Yoon, J. H., Park, J. K., Kim, W. M., Lee, J. W., Pak, H. S., Jeong, J. H., "Characterization of efficiency-limiting resistance losses in monolithically integrated $Cu(In,Ga)Se_2$ solar modules," Sci. Rep., Vol. 5, 7690, 2015. https://doi.org/10.1038/srep07690
  15. Lin, Y. C., Shen, M. T., Chen, Y. L., Hsu. H. R., Wu, C. H., "A study on $MoSe_2$ layer of Mo contact in $Cu(In,Ga)Se_2$ thin film solar cells," Thin Solid Films, Vol. 570, pp. 166-171, 2014. https://doi.org/10.1016/j.tsf.2014.04.016
  16. Song, Y. J., Kang, J. Y., Baek, G. Y., Bae, J. A., Yang, S. H., Jeon, C. W., "Two‐step selenization using nozzle free Se shower for $Cu(In,Ga)Se_2$ thin film solar cell," Prog Photovolt, Vol. 26, pp. 223-233, 2018. https://doi.org/10.1002/pip.2976
  17. Grzeszczyk, M., Molas, M. R., Nogajewski, K., Bartos, M., Bogucki, A.,Faugeras, C., Kossacki, P., Babinski, A., Potemski, M., "The effect of metallic substrates on the optical properties of monolayer $MoSe_2$," Sci. Rep., Vol. 10, 4981, 2020. https://doi.org/10.1038/s41598-020-61673-0
  18. Hussain, B., Aslam, A., Khan, T. M., Creighton, M., Zohuri, B., "Electron affinity and bandgap optimization of zinc oxide for improved performance of ZnO/Si heterojunction solar cell using PC1D simulations," Electronics, Vol. 8, No. 2, 238, 2019. https://doi.org/10.3390/electronics8020238
  19. Sharbati, S., Sites, J. R., “Impact of the band offset for n-Zn (O,S)/p-$Cu(In,Ga)Se_2$ solar cells,” IEEE J. Photovolt, Vol. 4, No. 2, pp. 697-702, 2014. https://doi.org/10.1109/JPHOTOV.2014.2298093