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THE IDENTICAL CHARACTERISTIC OF A RING

A. O. Atagün

Abstract. In this paper, a new characterization concept is in-
troduced for rings with identity, called the identical characteristic.
Some general results are obtained for various ring classes and illus-
trated by several examples.

1. Introduction

Throughout this study, all rings will be rings with identity, unless
they cause any confusion, the identity of the ring will be indicated by 1
and the zero of the ring will be indicated by 0. The order of R will be
denoted by |R|. R[x] will denote the ring of polynomials in indetermi-
nate x with coefficients in R.

The concept characteristic of a ring played a facilitating and effective
role in the classification of the rings and the study of their algebraic
properties.

In this study, we introduce the concept of identical characteristic(IC),
which is a new characteristic concept for rings with identity, and its
basic properties. We prove that IC is unchanged under an isomorphism.
We obtain some results related to IC in various ring classes such as
division rings, factor rings, Boolean rings, rings with zero-divisor, integer
domains, polynomial rings, prime fields, finite and infinite fields.
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2. Preliminaries

Throughout this paper, all rings considered will be different from the
zero ring. We refer to Hungerford [2] for all undefined concepts and
notations. A commutative ring R with identity 1 6= 0 and no zero
divisor is called an integral domain. A ring R with identity 1 6= 0 in
which every non-zero element is a unit is called a division ring. A field
is a commutative division ring. For a ring R if there is a positive integer
n such that n · x = 0 for all x ∈ R, then the least such positive integer
is the characteristic of the ring R and denoted by char(R). If no such
positive integer exists, then R is of characteristic 0.

Proposition 2.1. [1] Let R be a non-trivial ring with identity 1R.
Suppose S is a non-trivial subring of R with identity 1S with 1S 6= 1R.
Then there exist proper divisors of zero in R.

3. The identical characteristic

Identical characteristic has been chosen as the name because it is
depending on the identity of a ring and is structurally parallel to the
characteristic of rings.

Definition 3.1. Let R be a ring. If there exist a positive integer n
such that xn = 1 for all 0 6= x ∈ R, then the smallest of n is called the
identical characteristic of R and denoted by IC(R). If no such n exists,
then IC(R) = 0.

Example 3.2. IC(Z) = IC(Q) = IC(R) = IC(C) = 0.

IC(Z3) = 2, since 1
2

= 2
2

= 1.

Proposition 3.3. Let R be a ring with IC(R) = n 6= 0. Then, k is
a positive integer such that xk = 1 for all 0 6= x ∈ R if and only if n|k.

Proof. Assume xk = 1 for all 0 6= x ∈ R. By division algorithm, there
exist integers q, r such that k = nq + r and 0 ≤ r < n. Since IC(R) =
n 6= 0, then xn = 1 and we have 1 = xk = xnq+r = (xn)qxr = xr. Since
0 ≤ r < n and IC(R) = n, we have r = 0 by Definition 3.1. Hence n|k.
Conversely, we assume that n|k. Then there exists an integer t ≥ 1 such
that k = nt. Then xk = xnt = (xn)t = 1 for all 0 6= x ∈ R.

From Definition 3.1, we immediately have;
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Theorem 3.4. Let R be a ring. Then we have the following;

a) If IC(R) = n 6= 0, then R is a division ring.
b) If R is commutative and IC(R) = n 6= 0, then R is a field.
c) If R is commutative and has a zero-divisor, then IC(R) = 0.

Proof. a) Let 0 6= x ∈ R. Since IC(R) = n, we have xn = 1. Then
xxn−1 = xn−1x = 1, so x is a unit in R. As x is arbitrary, R is a division
ring.
b) Clear.
c) Assume that R is commutative with a zero-divisor, say a. Then there
exists a 0 6= b ∈ R such that ab = 0. Assume that IC(R) = n 6= 0.
By assumption, 0 = 0n = (ab)n = anbn = 1 · 1 = 1 is a contradiction.
Therefore IC(R) = 0.

The converse of Theorem 3.4 (a) is not true, in general. We have the
following example:

Example 3.5. Let H be the ring of real quaternions, where i2 = j2 =
k2 = ijk = −1. It is known that H is a division ring. Since there is no
positive integer n such that (i + j)n = 1, IC(H) = 0.

Theorem 3.6. The identical characteristic of a ring is preserved un-
der isomorphism.

Proof. Let R and T be rings with IC(R) = n 6= 0, IC(T ) = m 6= 0
and let f : R → T be an isomorphism of rings. Obviously, f(1R) = 1T .
Since IC(T ) = m, tm = 1T for all 0 6= t ∈ T . Then (f(r))m = f(rm) =
1T = f(1R) which implies rm = 1R for all 0 6= r ∈ R. Then n|m, by
Proposition 3.3. By symmetry m|n. Hence m = n, since m,n > 0.
If n = 0 or m = 0, the result can be obtained similarly.

Theorem 3.7. Let R be a ring with identity 1R and T be a ring with
identity 1T . If IC(R) = 0 6= IC(T ), then there is no monomorphism
f : R→ T such that f(1R) = 1T .

Proof. Assume that f : R→ T is a monomorphism such that f(1R) =
1T and let IC(R) = 0 6= IC(T ) = m. Since IC(T ) = m, (f(r))m =
f(rm) = 1T = f(1R) for all 0 6= r ∈ R. Then rm = 1R for all 0 6= r ∈ R
which is a contradiction of IC(R) = 0.

Is the identical characteristic of a ring with identity the same as that’s
subrings with identity? The answer is no for a commutative case. We
have the following:
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Theorem 3.8. Let R be a commutative ring with identity 1R. If there
exists a non-trivial subring S of R with identity 1S such that 1S 6= 1R,
then IC(R) = 0.

Proof. R has a zero-divisor by Proposition 2.1 and assumptions, then
IC(R) = 0 by Theorem 3.4 (c).

Example 3.9. Consider the ring R = Z6 and a subring S = {0̄, 3̄}
of R. Then 1S = 3̄ 6= 1̄ = 1R. We have IC(R) = 0 and IC(S) = 1.
Another subring of R is T = {0̄, 2̄, 4̄} such that 1T = 4̄ and IC(T ) = 2.

Theorem 3.10. Let R be a ring. Then we have the following;

a) If R has a nonzero idempotent element which is 6= 1, then IC(R) =
0.

b) If R has a non-zero nilpotent element, i.e. R is not a reduced ring,
then IC(R) = 0.

c) If R is a Boolean ring such that |R| ≥ 3, then IC(R) = 0.
d) If R is a direct product of non-zero rings, then IC(R) = 0.

Proof. a) Suppose that there exist an x ∈ R such that x 6= 0, x 6= 1
and x2 = x. Then there is no positive integer n such that xn = 1, i.e.
IC(R) = 0.
b) If 0 6= x ∈ R is a nilpotent element, then xk = 0 for some positive
integer k. Now assume that xn = 1 for some integer n ≥ 1. Then there
is an integer m ≥ 1 such that nm ≥ k. Hence 1 = (xn)m = xnm−kxk = 0,
a contradiction.
c) Follows directly from (a).
d) Assume that R = R1 ×R2, R1 6= {0}, R2 6= {0} and IC(R) = n 6= 0.
There exist an element (0, 0) 6= (x, 0) ∈ R, such that (x, 0)n = (xn, 0) 6=
1 = (1R1 , 1R2) is a contradiction, hence IC(R) = 0.

Example 3.11. Consider the 2 by 2 full matrix ring M2(Z2) over Z2.

Since

[
1̄ 0̄
0̄ 0̄

]2
=

[
1̄ 0̄
0̄ 0̄

]
, there is an idempotent element which is

different from zero and the identity. Thus IC(M2(Z2)) = 0.

Theorem 3.12. If F is a finite field of order n, IC(F ) = n− 1.

Proof. Since the multiplicative group F−{0} is a cyclic group of order
n − 1, then xn−1 = 1 for all 0 6= x ∈ F . Moreover if x is a generator of
F − {0}, then xk 6= 1 for 1 ≤ k < n− 1. Thus IC(F ) = n− 1.

Corollary 3.13. If p is a prime number, then IC(Zp) = p− 1.
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Proof. If p is a prime number and 0 6= ā ∈ Zp, then gcd(a, p) = 1.
Then ap−1 ≡ 1 (modp) by Fermat’s Little Theorem. Therefore x̄p−1 = 1̄
for all 0̄ 6= x̄ ∈ Zp, i.e. IC(Zp) = p− 1.

Example 3.14. Consider the field

F4 =

{(
0̄ 0̄
0̄ 0̄

)
,

(
1̄ 0̄
0̄ 1̄

)
,

(
0̄ 1̄
1̄ 1̄

)
,

(
1̄ 1̄
1̄ 0̄

)}
,

where the components of matrices are in Z2. Then it is easily checked
that IC(F4) = 3.

Proposition 3.15. Let F be a field. Then IC(F [x]) = 0.

Proof. Assume that IC(F [x]) = n 6= 0. If f(x) is a non-constant poly-
nomial of F [x], then (f(x))n = 1. This implies (f(x))n−1 = (f(x))−1 ∈
F [x], but this is a contradiction because the units of F [x] is equal to
units of F . Also F [x] is not a field and then (f(x))−1 ∈ F [x] is not true
in general. Hence IC(F [x]) = 0.

Remark 3.16. Let F be a prime field. It is known that F ∼= Q,
when char(F ) = 0 and F ∼= Zp, when char(F ) = p. Since IC(Q) = 0
and IC(Zp) = p − 1 by Theorem 3.6, we have, if char(F ) = 0, then
IC(F ) = 0 and if char(F ) = p, then IC(F ) = p− 1.

Theorem 3.17. If F is a field with char(F ) = 0, then IC(F ) = 0.

Proof. If char(F ) = 0, then Q ⊆ F , and for example, 2n 6= 1 for all
integers n ≥ 1. Hence IC(F ) = 0.

From the Theorem 3.17, we have the following question: If the char-
acteristic of a field F is a prime number, IC(F ) 6= 0 ? But the answer
is no, we have the following example:

Example 3.18. Zp(x) = {f
g
|f, g ∈ Zp[x], g 6= 0} is a field of rational

functions in the indeterminate x with the coefficient in Zp. Since Zp ⊂
Zp(x), then char(Zp(x)) = p. But there is no positive integer n such
that (x

1
)n = 1, i.e. IC(Zp(x)) = 0.

Theorem 3.19. If F is an infinite field, then IC(F ) = 0.

Proof. If char(F ) = 0, then Q ⊆ F and hence IC(F ) = 0. Now
assume char(F ) = p 6= 0. If F is transcendental over Zp, then there
is an element t ∈ F that is transcendental over Zp. But tn 6= 1 for all
integers n ≥ 1. Hence F is algebraic over Zp. Since F is infinite, there
is a chain of fields, say, Zp ( F1 ( F2 ( · · · ( F such that [Fi : Zp] <∞
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for all i ≥ 1. Hence for each integer n ≥ 1, there is an integer k ≥ n
such that [Fk : Zp] > n. Then |Fk| > pn > n and hence xn 6= 1 for some
0 6= x ∈ Fk ⊆ F . Thus IC(F ) = 0.
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