Korean J. Math. **28** (2020), No. 3, pp. 421–438 http://dx.doi.org/10.11568/kjm.2020.28.3.421

COMMUTATIVE SINGLE POWER CYCLIC HYPERGROUPS OF ORDER 4 AND PERIOD 2

M. R. KHERADMAND AND B. DAVVAZ*

ABSTRACT. In this paper we enumerate all commutative single power cyclic hypergroups of order 4 and period 2. Moreover, we prove some interesting properties regarding cyclic hypergroups.

1. Introduction and basic concepts

The composition of two elements in a group is an element, while the composition of two elements in a hypergroup is a set. If H is a nonempty set and * is a mapping from $H \times H$ into the family of non-empty subsets of H, then (H, *) is called a hypergroupoid. A hypergroup is a hypergroupoid (H, *) with the following two conditions: (1) (x * y) * z =x * (y * z), for every $x, y, z \in H$; (2) x * H = H * x = H, for every $x \in H$. Note that if A, B are non-empty subsets of H and $x \in H$, then we mean

$$A * B = \bigcup_{a \in A \ b \in B} a * b, \ x * A = \{x\} * A \text{ and } A * x = A * \{x\}.$$

If (H, *) satisfies only in the first axiom, then it is called a semihypergroup. The concept of hyperstructures introduced by F. Marty in 1934 [15] and applied them to groups, algebraic functions and rational functions. Cyclic semihypergroups and cyclic hypergroups have been studied by Al Tahan and Davvaz [1–4], Corsini [7], Corsini and Leoreanu [8], Davvaz [9], De Salvo and and Freni [10], Freni [11], Konguetsof et

* Corresponding author.

Received June 19, 2019. Revised August 26, 2019. Accepted July 28, 2020.

²⁰¹⁰ Mathematics Subject Classification: 20N20.

Key words and phrases: commutative single power, cyclic hypergroups.

[©] The Kangwon-Kyungki Mathematical Society, 2020.

This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by -nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

al. [13], Leoreanu [14], Mirvakili et al. [16], Mousavi et al. [18], Vougiouklis [20,21], and many others. In [19], Novak et al. presented an overview and motivation of existing approaches to the cyclicity in algebraic hyperstructures. Moreover, they related these to EL-hyperstructures, a broad class of algebraic hyperstructures constructed from (pre)ordered (semi)groups. For more details about algebraic hyperstructures we refer the readers to [5–9, 12, 19, 21].

In [4], Al Tahan and Davvaz classified all commutative single power cyclic hypergroups of order three and period two.

Now, in this paper we classify all commutative single power cyclic hypergroups of order four and period two. The paper is organized as follows: After an introduction, in Section 2 we present some basic definitions concerning hyperstructures that are used throughout the paper. In Section 3 we present some new properties of cyclic hypergroups and in Section 4 find all commutative single power cyclic hypergroups of order four where each of its elements is a generator of period two. In Section 5 we show that some commutative single power cyclic hypergroups of order four and period two are isomorphic. Throughout this paper we denote the period of a cyclic hypergroup H by per(H).

An element $e \in H$ is called an identity of (H, *) if $x \in x * e \cap e * x$ for all $x \in H$ and it is called a scalar identity if $x * e = e * x = \{x\}$ for all $x \in H$ that is unique. An element $x \in H$ is called idempotent if x * x = x. The hypergroup (H, *) is said to be commutative if x * y = y * xfor all $x, y \in H$. A non-empty subset K of H is called subhypergroup, if (K, *) is hypergroup. A canonical hypergroup [17] is a non-empty set Hendowed with a mapping $* : H \times H \longrightarrow \mathcal{P}^*(H)$, satisfying the following properties:

- (1) x * (y * z) = (x * y) * z for every $x, y, z \in H$,
- (2) x * y = y * x for every $x, y \in H$,
- (3) there exists $e \in H$ such that e * x = x * e = x for every $x \in H$,
- (4) for every $x \in H$, there exists a unique element x' such that $e \in x * x'$,
- (5) $z \in x * y$ implies that $y \in x' * z$ and $x \in z * y'$.

A hypergroup (H, *) is called total hypergroup if x * y = H for all $x, y \in H$. A hypergroup (H, *) is cyclic if there exists $h \in H$ and $s \in N$ such that $H = h \cup h^2 \cup \cdots h^s \cup \cdots$. If $H = h \cup h^2 \cup \cdots h^s$ then H is cyclic hypergroup with finite period. Otherwise, H is called cyclic hypergroup with infinite period. A hypergroup (H, *) is called single power cyclic hypergroup if there exists $h \in H$ and $s \in N$ such that

 $H = h \cup h^2 \cup \cdots h^s \cup \cdots$ and $h \cup h^2 \cup \cdots h^{m-1} \subseteq h^m$ for every $m \in N$. Let (H, *) and (H', *') be two hypergroups. A function $f : (H, *) \longrightarrow (H', *')$ is said to be a homomorphism if $f(x_1 * x_2) \subseteq f(x_1) *' f(x_2)$ for all $x_1, x_2 \in H$. And it is called good homomorphism if $f(x_1 * x_2) = f(x_1) *' f(x_2)$. Two hypergroups are said to be isomorphic if there exists a bijective good homomorphism between them.

2. Properties of Cyclic Hypergroups

In this section we present some properties of cyclic hypergroups.

PROPOSITION 2.1. [4] Let H be a cyclic hypergroup with generator $h \in H$. If there exists $k \in N$ satisfying $h^{k+1} = h^k$ then $per(H) \leq k$.

PROPOSITION 2.2. [4] Let H be a cyclic hypergroup with generator $h \in H$. If there exist $i \neq j \in N$ satisfying $h^i = h^j$ then $per(H) \leq max\{i, j\}$.

PROPOSITION 2.3. [4] If H is a finite cyclic hypergroup, then it has a finite period.

In the following example we show that the converse of proposition 2.3 is not always true.

EXAMPLE 1. For every infinite total hypergroup H we have per(H) = 2. Thus per(H) is finite but H is infinite.

PROPOSITION 2.4. [4] Let H be a cyclic hypergroup. Then per(H) = 1 if and only if H is the trivial hypergroup.

PROPOSITION 2.5. [4] Let H be a cyclic hypergroup of order two. Then per(H) = 2.

PROPOSITION 2.6. [4] Let H be a cyclic hypergroup of order three. Then per(H) = 2 or per(H) = 3.

PROPOSITION 2.7. [4] If H is a single power cyclic hypergroup of order $n \ge 2$ then $2 \le per(H) \le n$.

EXAMPLE 2. Let $H = \{a, b, c, d\}$ and define (H, *) by the following table.

M. R. Kheradmand and B. Davvaz

	a	b	-	d
a	a, b, c, d	c	a, b, c, d	c
b	a, b, c, d	a, b, c, d	a, b, c, d	С
c	a, b, c, d			
d	С	c	a, b, c	a, b, c, d

Then (H, *) is a non commutative single power cyclic hypergroup of period two. It is clear from the table that (H, *) is not commutative, satisfies the reproduction axiom and is generated by every member of H. Easy computations show that (H, *) is associative.

3. Commutative Single Power Cyclic Hypergroups of Order Four and Period Two

In this section we find all commutative single power cyclic hypergroups of order four and period two where every element is a generator of period two.

PROPOSITION 3.1. Let $H = \{a, b, c, d\}$ and * be a commutative hyperoperation on H. Then (H, *) is associative if the all the following conditions are satisfied:

$$\begin{array}{l} (1) \ a*(a*b) = (a*a)*b, \\ (2) \ a*(a*c) = (a*a)*c, \\ (3) \ a*(a*d) = (a*a)*d, \\ (4) \ a*(b*b) = (a*b)*b, \\ (5) \ a*(b*c) = (a*b)*c, \\ (6) \ a*(b*d) = (a*b)*d, \\ (7) \ a*(c*b) = (a*c)*b, \\ (8) \ a*(c*c) = (a*c)*c, \\ (9) \ a*(c*d) = (a*c)*d, \\ (10) \ a*(d*b) = (a*d)*b, \\ (11) \ a*(d*c) = (a*d)*b, \\ (12) \ a*(d*d) = (a*d)*c, \\ (12) \ a*(d*d) = (b*a)*a, \\ (14) \ b*(a*c) = (b*a)*c, \\ (15) \ b*(a*d) = (b*a)*c, \\ (16) \ b*(b*c) = (b*b)*c, \\ (17) \ b*(b*d) = (b*b)*d, \\ \end{array}$$

Commutative single power cyclic hypergroups of order 4 and period 2 425

(18) b*(c*c) = (b*c)*c,(19) b*(c*d) = (b*c)*d,(20) b*(d*a) = (b*d)*a,(21) b*(d*c) = (b*d)*c,(22) b*(d*d) = (b*d)*d,(23) c*(c*d) = (c*c)*d,(24) c*(d*d) = (c*d)*d.

Proof. Since (H, *) is commutative, it follows that for every $x, y, z \in H$, we have x * (x * x) = (x * x) * x and z * (y * z) = (y * z) * z = (z * y) * z. Having (H, *) is commutative implies that b * (c * a) = b * (a * c) = (a * c) * b and having (a * c) * b = a * (c * b) implies that b * (c * a) = b * (a * c) = (a * c) * b = a * (c * b) = a * (b * c) = (b * c) * a (using 7).

Having (H, *) is commutative implies that c * (a * a) = (a * a) * c = a * (a * c) by (2). We get now that c * (a * a) = (a * a) * c = a * (a * c) = (a*c)*a = (c*a)*a. In a similar manner, we prove that c*(b*d) = (c*b)*d (using 19,21), c * (d * a) = (c * d) * a (using 11), c * (b * a) = (c * b) * a (using 5), d * (c * b) = (d * c) * b (using 19).

EXAMPLE 3. Let $H_4 = \{a, b, c, d\}$ and define $(H_4, *)$ by the following table:

*	a	b	С	d
a	a,b,c,d	a, b	a, b	c,d
b	a, b	a,b,c,d	c, d	a, b
c	a, b	c, d	a,b,c,d	c,d
d	c,d	a, b	c,d	a,b,c,d

It is clear * is commutative, satisfy the reproduction axiom and that $H_4 = a^2 = b^2 = c^2 = d^2$. We show now that H_4 is associative by the using following table:

M. R. Kheradmand and B. Davvaz

(a*a)*b = H
(a*a)*c = H
(a*a)*d = H
(a * b) * b = H
(a * b) * c = H
(a*b)*d = H
(a * c) * b = H
(a * c) * c = H
(a * c) * d = H
(a*d)*b = H
(a*d)*c = H
(a*d)*d = H
(b*a)*a = H
(b*a)*c = H
(b*a)*d = H
(b*b)*c = H
(b*b)*d = H
(b*c)*c = H
(b*c)*d = H
(b*d)*a = H
(b*d)*c = H
(b*d)*d = H
(c * c) * d = H
(c*d)*d = H

THEOREM 3.2. There are 183398 commutative single power cyclic hypergroups of order four and period two.

Proof. Indeed, by Algorithm 1 presented in Appendix and a computer program we can enumerate the commutative single power cyclic hypergroups of order 4 and period 2. \Box

EXAMPLE 4. In the following we present some of the commutative single power cyclic hypergroups of order 4 and period 2:

H_1	a	b	С	d	H_2 a b c d	
a	a, b, c, d	a, b	a, b	c, d	a a, b, c, d a, b a, b c, d	
b	a, b	a, b, c, d	c,d	a, b	$\left \begin{array}{ccc} b \\ a, b \\ a, b, c, d \\ c, d \\ a, b \\ \end{array}\right $	
c	a, b	c, d	a, b, c, d	a, b	$\begin{vmatrix} c \\ a, b \\ c, d \\ a, b, c, d \\ a, b, c \end{vmatrix}$	$c \mid$
d	c, d	a, b		a, b, c, d		, d
H_3	a	b	c	d	H_4 a b c d	
a	a, b, c, d	a, b	a, b	c, d	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
b	a, b	a, b, c, d			$\left \begin{array}{ccc} b \\ a,b \\ a,b,c,d \\ c,d \\ a,b \\ \end{array}\right $	
c	,		a, b, c, d		$\begin{vmatrix} c \\ a,b \\ c,d \\ a,b,c,d \\ c,d \end{vmatrix}$	
d	c, d	a, b				, d
H_5	a		С	d	H_6 a b c d	
a	a, b, c, d	,		,	$\begin{vmatrix} a & a, b, c, d & a, b & a, b & c, d \end{vmatrix}$	
b		a, b, c, d			$\left \begin{array}{ccc}b&a,b&a,b,c,d&c,d&a,b\end{array}\right $	
c	a, b		a, b, c, d		$\begin{vmatrix} c \\ a,b \\ c,d \\ a,b,c,d \\ b,c,d \end{vmatrix}$	
d	c, d			a, b, c, d	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$, d
H_7	a		С	d	$ H_8 $ a b c d	
	, , ,	a, b	,	,	$\begin{vmatrix} a \\ a, b, c, d \\ a, b \\ a, b \\ c, d \end{vmatrix}$	
b		a, b, c, d			$\begin{vmatrix} b \\ a,b \\ a,b,c,d \\ c,d \\ a,b,c \end{vmatrix}$	
c				a, b, c, d	$\left \begin{array}{c}c\\a,b\\c\end{array}\right a,b \\ c,d \\ a,b,c,d \\ a,b$	
d	c, d	a, b			$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
H_9	a	b		d	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	a, b, c, d		a, b		$\begin{bmatrix} a & a, b, c, d & a, b & a, b & c, c \end{bmatrix}$	
b		a, b, c, d			$\begin{vmatrix} b \\ a,b \\ a,b,c,d \\ c,d \\ a,b, \end{vmatrix}$	
	a, b		a, b, c, d		$\begin{vmatrix} c \\ a,b \\ c,d \\ a,b,c,d \\ a,b, \end{vmatrix}$	
d		a, b, c			$\begin{bmatrix} d & c, d & a, b, c & a, b, d & a, b, c \end{bmatrix}$	$\underline{c, d}$
H_{11}		b	<i>c</i>	<i>d</i>	H_{12} a b c a	1
		d a, b		c, d	$\left \begin{array}{cccccccccccccccccccccccccccccccccccc$	
b		a, b, c, c			$\begin{bmatrix} b & a, b & a, b, c, d & c, d & a, b \end{bmatrix}$	
			a, b, c, c		$\begin{vmatrix} c & a, b & c, d & a, b, c, d & a, c \\ d & a, d & a, b, c, d & a, c \\ \end{vmatrix}$	
				a, b, c, d		
H_{13}			C c		$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
	a, b, c, b			c, d	$\begin{bmatrix} a & a, b, c, d & a, b & a, b & c, \\ a & b & c & b & c & d & c & d \\ \end{bmatrix}$	
b		a, b, c, c	,	, ,	$\begin{bmatrix} b & a, b & a, b, c, d & c, d & a, b \\ a & b & a, d & a, b, c, d, a, b \\ \end{bmatrix}$	<i>'</i>
$\begin{vmatrix} c \\ d \end{vmatrix}$	a, b		a, b, c, c		$\begin{bmatrix} c & a, b & c, d & a, b, c, d a, b, d \\ d & c, d & a, b, c, d a, b, d & a, b \\ d & c, d & c, d & c, d & c, d & c \\ \end{bmatrix}$	
a	c, d	a, b, c	v, c, a	a, b, c, d	d c, d a, b, c a, b, c, d a, b,	c, a

Commutative single power cyclic hypergroups of order 4 and period 2 427

M. R. Kheradmand and B. Davvaz

H_{15}	a	b	c	d	H_{16}	a	
a	a, b, c, d	l a, b	a, b	c, d	a	a, b, c, c	d d
b		a, b, c, d			b	a, b	
c		c, d			c	a, b	
d	c, d	a, b, d	a, b	a, b, c, d	d	c, d	a,
H_{17}	a	b	С	d	H_{18}	a	
a	a, b, c, d	l a, b	a, b	c, d	a	a, b, c, c	d d
b		a, b, c, d			b	a, b	a, b
c	a, b	c, d	a, b, c, d	a, b, d	c	a, b	0
d	c, d	a, b, d	a, b, d	a, b, c, d	d	c, d	a,
H_{19}	a	b	С	d	H_{20}	a	
a	a, b, c, d	b l a, b	a, b	c, d	a	a, b, c, c	d d
b	a, b	a, b, c, d	c, d	a, b, d	b	a, b	a, b
c	a, b	c, d	a, b, c, d	a, c, d	c	a, b	C
d	c, d	a, b, d	a, c, d	a, b, c, d	d	c, d	a,
H_{21}		b			H_{22}	a	
a		l a, b			a	a, b, c, c	d d
b	a, b	a, b, c, d	c, d	a, b, d	b	a, b	
c		c, d			c	a, b	0
d	c, d	a, b, d			d	c, d	a, b
H_{23}	a	b	C	d	H_{24}	a	
a	a, b, c, d	a, b	a, b	c, d	a	a, b, c, c	d = c
b		a, b, c, d			b	a, b	a, b
c		c, d			c	a, b	0
d	-	a, b, c, d			d	c, d	a, b
H_{25}	a	b	c	d	H_{26}	a	
a	a, b, c, d	l a, b	a, b	c,d	a	a, b, c, c	d c
b	a, b	a, b, c, d	c, d	a, b, c, d	b	a, b	a, b
c	a, b	c, d	a, b, c, d	c, d	c	a, b	0
d	c, d	a, b, c, d	c, d	a, b, c, d	d	c, d	a, b
H_{27}	a	b	c	d	H_{28}	a	
a	a, b, c, d	l a, b	a, b	c, d	a	a, b, c, c	d c
b	a, b	a, b, c, d	c, d	a, b, c, d	b	a, b	a, b
c	a, b	c, d			c	a, b	C
d	c, d	a, b, c, d	b, c, d	a, b, c, d	d	c, d	a, b

H_{16}	a	b	С	d
a	a, b, c, d	a, b	a, b	c, d
b	a, b	a, b, c, d	c, d	a, b, d
c	a, b	c, d	a, b, c, d	a, b, c
d	c, d	a, b, d	a, b, c	a, b, c, d
H_{18}				
a	a, b, c, d	$b \\ a, b$	a, b	c, d
b	a, b	a, b, c, d	c, d	a, b, d
c	a, b	c, d	a,b,c,d	c, d
d	c, d	a, b, d	c,d	a, b, c, d
H_{20}	a	$b \\ a, b$	С	d
a	a, b, c, d	a, b	a, b	c, d
b	a, b	a, b, c, d	c,d	a, b, d
c		c, d		
d		a, b, d		
H_{22}	a	b a, b	С	d
a				
b		a, b, c, d		
c	a, b	c, d	a, b, c, d	a, b
d	c, d	a, b, c, d	a, b	a, b, c, d
H_{24}	a	b a, b	С	d
a				
b		a, b, c, d		
		c, d		
	c, d	a, b, c, d	a, b, d	a, b, c, d
H_{26}		$b \\ a, b$	<u> </u>	d
b		a, b, c, d		
		c, d		
	c, d	a, b, c, d	a, c, d	a, b, c, d
H_{28}		b a, b	<u> </u>	d
	[a, b, c, d]	a, b	a, b	c, d
b		a, b, c, d		
$\begin{array}{c} c\\ d\end{array}$	a, b	c, a		a, b, c, d
d	c, d	a, b, c, d	a, b, c, d	a, b, c, d

H_{29}	a b c	d	$ H_{30} $ a b c d
a	a, b, c, d a, b a, b		a a, b, c, d a, b a, b a, c, d
b	a,b a,b,c,d c,d		b a, b a, b, c, d c, d a, b
c	a, b c, d a, b, c, d	a, b	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
d	a,c,d a,b a,b	a, b, c, d	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
H_{31}	a b c	d	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
a	$egin{array}{c c} a, c, d & a, b & a, b \\ \hline a & b & c \\ \hline a, b, c, d & a, b & a, b \end{array}$	a, c, d	$a \ a, b, c, d \ a, b \ a, b \ a, c, d$
b	a, b a, b, c, d c, d	a, b	$b \mid a, b \mid a, b, c, d \mid c, d \mid a, b$
	a, b c, d a, b, c, d		$c \mid a, b c, d a, b, c, d c, d$
d	a, c, d a, b a, b, d	a, b, c, d	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
H_{33}	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	d	$egin{array}{c c c c c c c c c c c c c c c c c c c $
a	$a, b, c, d a, b \qquad a, b$	a, c, d	a a, b, c, d = a, b = a, b = a, c, d
b	a,b a,b,c,d c,d	a, b	b a, b a, b, c, d c, d a, b
c	a, b c, d a, b, c, d	a, c, d	$ \begin{vmatrix} c \\ a,b \\ c,d \\ a,b,c,d \\ b,c,d \end{vmatrix} $
d	a, c, d a, b a, c, d	a, b, c, d	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
H_{35}	$egin{array}{cccccccccccccccccccccccccccccccccccc$	d	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
a	a, b, c, d a, b a, b	a, c, d	$a \mid a, o, c, a a, o a, o a, c, a$
b	a, b a, b, c, d c, d	a, b	b a,b a,b,c,d c,d a,b,c
C	a, b c, d a, b, c, d		$\left \begin{array}{c}c\\a,b\\c\\c\\d\end{array}\right a,b c,d a,b,c,d a,b$
d		a, b, c, d	
H_{37}	$\begin{array}{c ccc} a & b & c \\ \hline a, b, c, d & a, b & a, b \end{array}$	<u>d</u>	$egin{array}{c c c c c c c c c c c c c c c c c c c $
	a, b, c, d a, b a, b	a, c, d	a a, b, c, d a, b a, b a, c, d
b	a, b a, b, c, d c, d		$\left \begin{array}{ccc}b\\a,b\\a,b,c,d\\c,d\\a,b,c\end{array}\right $
C	a, b c, d a, b, c, d	a, b, c	$\left \begin{array}{c}c\\a,b\\c\\d\end{array}\right \begin{array}{c}c,d\\a,b,c,d\\a,b,d\\d\end{array}\right $
d	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	a, b, c, d	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
H_{39}	$\begin{array}{c ccc} a & b & c \\ \hline a, b, c, d & a, b & a, b \end{array}$	<u>d</u>	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	a, b, c, d a, b a, b	a, c, d	
b	a, b, a, b, c, d, c, d		$\left \begin{array}{c}b\\a,b\\a,b,c,d\\c,d\\c,d\\c,d\\c,d\\c,d\\c,d\\c,d\\c,d\\c,d$
	a, b c, d a, b, c, d		$\begin{vmatrix} c \\ c \end{vmatrix} = a, b = c, d = a, b, c, d = a, c, d \end{vmatrix}$
d	a, c, d a, b, c c, d	a, b, c, d	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
H_{41}	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<u>d</u>	H_{42} a b c d
	[a, b, c, d a, b a, b	a, c, d	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
b	a, b, a, b, c, d, c, d		$\left \begin{array}{cccc} b \\ a,b \\ a,b,c,d \\ c,d \\ a,b,c \\ d,c,d \\ c,d \\ $
	$egin{array}{ccc} a,b & c,d & a,b,c,d\ a,c,d & a,b,c & b,c,d \end{array}$	b, c, d	$\left \begin{array}{c}c\\d\end{array}\right a,b\\c,d\\a,b,c,d\\a,b,c,d$
d	a, c, d a, b, c b, c, d	a, b, c, d	

Commutative single power cyclic hypergroups of order 4 and period 2 429

M. R. Kheradmand and B. Davvaz

H_{43}	a	b	С	d			b		
a	a, b, c, d	a, b	a, b	a, c, d	a	a, b, c, d	a, b	a, b	a, c, d
b	a, b	a,b,c,d	c, d	a, b, d	b	a, b	a,b,c,d	c, d	a, b, d
c	a, b	c, d	a,b,c,d	a, b	c	a, b	c, d	a, b, c, d	a, b, c
				a, b, c, d	d	a, c, d	a, b, d	a, b, c	a, b, c, d
H_{45}	a	$b \\ a, b$	С	d	H_{46}	a	b	c	d
a					a	a, b, c, d	a, b	a, b	a, c, d
b	a, b	a,b,c,d	c, d	a, b, d	b	a, b	a,b,c,d	c, d	a, b, d
c	a, b	c, d	a,b,c,d	a, b, d	c	a, b	c, d	a, b, c, d	c, d
		a, b, d							a, b, c, d
H_{47}	a	b	c	d	H_{48}	a	b	С	d
a	a, b, c, d	a, b	a, b	a, c, d	a	a, b, c, d	a, b	a, b	a, c, d
b	a, b	a,b,c,d	c, d	a, b, d	b	a, b	a,b,c,d	c, d	a, b, d
c	a, b	c, d	a,b,c,d	a, c, d	c	a, b	c, d	a, b, c, d	b, c, d
		a, b, d			d	a, c, d	a, b, d	b, c, d	a, b, c, d
H_{49}	a	b	С	d	H_{50}	a	b	С	d
		a, b			a	a, b, c, d	a, b	a, b	a, c, d
b	a, b	a,b,c,d	c, d	a, b, d	b	a, b	a,b,c,d	c, d	a, b, c, d
c	a, b	c, d	a, b, c, d	a,b,c,d	c	a, b	c, d	a, b, c, d	a, b
d	a, c, d	a, b, d	a, b, c, d	a, b, c, d	d	a, c, d	a, b, c, d	a, b	a, b, c, d

PROPOSITION 3.3. Let $H = \{a, b, c, d\}$ and (H, *) be a commutative single power cyclic hypergroup of period two such that all of its elements are generators of period two. Then, $y \neq x * y = y * x \neq x$, for any $x, y \in H$.

Proof. (a) If a * b = a then $a * (b * b) = a * H = H \neq (a * b) * b = a * b = a$ and if a * b = b then $a * (a * b) = a * b = b \neq (a * a) * b = H * b = H$,

(b) If a * c = c then $a * (a * c) = a * c = c \neq (a * a) * c = H * c = H$ and if a * c = a then $a * (c * c) = a * H = H \neq (a * c) * c = a * c = a$,

(c) If a * d = a then $a * (d * d) = a * H = H \neq (a * d) * d = a * d = a$ and if a * d = d then $a * (a * d) = a * d = d \neq (a * a) * d = H * d = H$,

(d) If b * c = b then $b * (c * c) = b * H = H \neq (b * c) * c = b * c = b$ and if b * c = c then $b * (b * c) = b * c = c \neq (b * b) * c = H * c = H$,

(e) If b * d = b then $b * (d * d) = b * H = H \neq (b * d) * d = b * d = b$ and if b * d = d then $b * (b * d) = b * d = d \neq (b * b) * d = H * d = H$,

(f) If c * d = c then $c * (d * d) = c * H = H \neq (c * d) * d = c * d = c$ and if c * d = d then $d * (c * c) = d * H = H \neq (d * c) * c = d * c = d$. \Box

PROPOSITION 3.4. Let $H = \{a, b, c, d\}$ and (H, *) be a commutative single power cyclic hypergroup of period two such that all of its elements are generators of period two. Then:

(a) If a * b = c then a * c = b * c = H,
(b) If a * b = d then a * d = b * d = H,
(c) If a * c = b then a * b = c * b = H,
(d) If a * c = d then a * d = c * d = H.
(e) If a * d = b then a * b = d * b = H.
(f) If a * d = c then a * c = d * c = H.
(g) If b * c = d then b * d = c * d = H.
(h) If b * c = a then b * a = c * a = H,
(i) If b * d = c then b * a = d * a = H,
(j) If b * d = a then c * a = d * a = H,
(l) If c * d = b then c * b = d * b = H.

Proof. (a) By hypothesis we have a * b = c. Now since a * (a * b) = (a*a)*b, we obtain a*c = H. On the other hand since b*(b*a) = (b*b)*a we obtain b * c = H,

(b) By hypothesis we have a * b = d. Now since a * (a * b) = (a * a) * b, we obtain a * d = H. On the other hand since a * (b * b) = (a * b) * b we obtain b * d = H,

(c) By hypothesis we have a * c = b. Now since a * (c * c) = (a * c) * c, we obtain b * c = H. On the other hand since c * (a * a) = (c * a) * a we obtain b * a = H,

(d) By hypothesis we have a * c = d. Now since a * (a * c) = (a * a) * c, we obtain a * d = H. On the other hand since c * (c * a) = (c * c) * a we obtain d * c = H.

(e) By hypothesis we have a * d = b. Now since a * (a * d) = (a * a) * d, we obtain a * b = H. On the other hand since d * (d * a) = (d * d) * a we obtain d * b = H.

(f) By hypothesis we have a * d = c. Now since a * (a * d) = (a * a) * d, we obtain a * c = H. On the other hand since a * (d * d) = (a * d) * d we obtain c * d = H.

(g) By hypothesis we have b * c = d. Now since b * (b * c) = (b * b) * c, we obtain b * d = H. On the other hand since b * (c * c) = (b * c) * c we obtain c * d = H.

(h) By hypothesis we have b * c = a. Now since b * (b * c) = (b * b) * c, we obtain b * a = H. On the other hand since b * (c * c) = (b * c) * c we obtain a * c = H.

(i) By hypothesis we have b * d = c. Now since b * (d * d) = (b * d) * d, we obtain c * d = H. On the other hand since b * (b * d) = (b * b) * d we obtain b * c = H,

(j) By hypothesis we have b * d = a. Now since b * (d * d) = (b * d) * d, we obtain a * d = H. On the other hand since d * (b * b) = (d * b) * b we obtain a * b = H,

(k) By hypothesis we have c * d = a. Now since c * (d * d) = (c * d) * d, we obtain a * d = H. On the other hand since d * (c * c) = (d * c) * c we obtain a * c = H,

(1) By hypothesis we have c * d = b. Now since c * (c * d) = (c * c) * d, we obtain c * b = H. On the other hand since c * (d * d) = (c * d) * d we obtain b * d = H,

PROPOSITION 3.5. Let $H = \{a, b, c, d\}$ and (H, *) be a commutative single power cyclic hypergroup of period two such that all of its elements are generators of period two. Then:

(a) If $a * b \neq H$ then $a * c \neq b$ and $b * c \neq a$, (b) If $a * c \neq H$ then $a * b \neq c$ and $a * d \neq c$, (c) If $b * d \neq H$ then $b * c \neq d$ and $b * a \neq d$, (d) If $d * a \neq H$ then $d * c \neq a$ and $d * b \neq a$, (e) If $d * a \neq H$ then $d * b \neq a$ and $a * b \neq d$, (f) If $d * b \neq H$ then $d * a \neq b$ and $d * c \neq b$,

Proof. The proof is similar to the proof of Proposition 3.4.

4. Non-Isomorphic Commutative Single Power Cyclic Hypergroups of Order 4 and Period 2

In order to determine all the non-isomorphic commutative single power cyclic hypergroups of order 4 and period 2, we use Algorithm 1. Indeed, the algorithm is written base on the following illustrations.

Commutative single power cyclic hypergroups of order 4 and period 2 433

PROPOSITION 4.1. H_3 and H_2 are isomorphic hypergroups.

H_3	a	b	С	d	1	H_2	a	b	С	d
a	a, b, c, d	a, b	a, b	c, d		a	a, b, c, d	a, b	a, b	c, d
b	a, b	a,b,c,d	c, d	a, b		b	a, b	a, b, c, d	c, d a, b, c, d	a, b
			a, b, c, d			c	a, b	c, d	a, b, c, d	a, b, c
			a, b, d						a, b, c	

Proof. Define $f: H_3 \longrightarrow H_2$ by f(a) = b, f(b) = a, f(c) = d and f(d) = c. Since H_3 and H_2 are commutative, it is suffices to check the following:

f(a * a) = f(H) = H	f(a) *' f(a) = b *' b = H
f(b * b) = f(H) = H	f(b) *' f(b) = a *' a = H
f(c * c) = f(H) = H	f(c) *' f(c) = d *' d = H
f(d * d) = f(H) = H	f(d) *' f(d) = c *' c = H
$f(a * b) = f(\{a, b\}) = \{a, b\}$	$f(a) *' f(b) = b *' a = \{a, b\}$
$f(a * c) = f(\{a, b\}) = \{a, b\}$	$f(a) *' f(c) = b *' d = \{a, b\}$
$f(a * d) = f(\{c, d\}) = \{c, d\}$	$f(a) *' f(d) = b *' c = \{c, d\}$
$f(b * c) = f(\{c, d\}) = \{c, d\}$	$f(b) *' f(c) = a *' d = \{c, d\}$
$f(b * d) = f(\{a, b\}) = \{a, b\}$	$f(b) *' f(d) = a *' c = \{a, b\}$
$f(c * d) = f(\{a, b, d\}) = \{a, b, c\}$	$f(c) *' f(d) = d *' c = \{a, b, c\}$

PROPOSITION 4.2. H_{32} and H_{18} are isomorphic hypergroups.

H_{32}	a	b	С	d	H_{18}	a	b	С	d
a	a, b, c, d	a, b	a, b	a, c, d	a	a, b, c, d	a, b	a, b	c, d
b	a, b	a, b, c, d	c, d	a, b	b	a, b	a, b, c, d	c, d	a, b, d
c	a, b	c, d	a, b, c, d	c, d	c	a, b	c, d	a,b,c,d	c, d
		a, b							

Proof. Define $f: H_{32} \longrightarrow H_{18}$ by f(a) = d, f(b) = c, f(c) = a and f(d) = b. Since H_{32} and H_{18} are commutative, it is suffices to check the following:

M. R. Kheradmand and B. Davvaz

f(a * a) = f(H) = H	f(a) *' f(a) = d *' d = H
f(b*b) = f(H) = H	f(b) *' f(b) = c *' c = H
f(c * c) = f(H) = H	f(c) *' f(c) = a *' a = H
f(d * d) = f(H) = H	f(d) *' f(d) = b *' b = H
$f(a * b) = f(\{a, b\}) = \{c, d\}$	$f(a) *' f(b) = d *' c = \{c, d\}$
$f(a * c) = f(\{a, b\}) = \{c, d\}$	$f(a) *' f(c) = d *' a = \{c, d\}$
$f(a * d) = f(\{a, c, d\}) = \{a, b, d\}$	$f(a) *' f(d) = d *' b = \{a, b, d\}$
$f(b * c) = f(\{c, d\}) = \{a, b\}$	$f(b) *' f(c) = c *' a = \{a, b\}$
$f(b * d) = f(\{a, b\}) = \{c, d\}$	$f(b) *' f(d) = c *' b = \{c, d\}$
$f(c * d) = f(\{c, d\}) = \{a, b\}$	$f(c) *' f(d) = a *' b = \{a, b\}$

PROPOSITION 4.3. H_1, H_2, H_4, H_5 and H_7 are non-isomorphic hypergroups.

H_1	a	b	С	d
a	a, b, c, d	a, b	a, b	c, d
b	a, b	a,b,c,d	c, d	a, b
c	a, b	c, d	a, b, c, d	a, b
d	c, d	a, b	a, b	a, b, c, d
H_4	a	b	c	d
a	a, b, c, d	a, b	a, b	c, d
b	a, b	a,b,c,d	c, d	a, b
c	a, b	c, d	a, b, c, d	c, d
d	c, d	a, b	c, d	a, b, c, d
H_7	a	b	c	d
a	a, b, c, a	l = a, b	a, b	c, d
b	a, b	a, b, c, d	c, d	a, b
c	a, b	c, d	a, b, c, d	[a, b, c, d]
d	c, d	a,b	a, b, c, d	l[a, b, c, d]

H_2	a	b	С	d
a	a, b, c, d	a, b	a, b	c, d
b	a, b	a,b,c,d	c, d	a, b
c	a, b	c, d	a,b,c,d	a, b, c
d	c, d	a, b	a, b, c	a,b,c,d
H_5	a	b	С	d
a	a, b, c, d	a, b	a, b	c, d
b	a, b	a,b,c,d	c, d	a, b
c	a, b	c, d	a,b,c,d	a, c, d
d	c, d	a, b	a, c, d	a,b,c,d
d	c, d	a, b	a, c, d	a, b, c, d

THEOREM 4.4. Among the 183398 commutative single power cyclic hypergroups of order four and period two, there are 7906 non-isomorph commutative single power cyclic hypergroups.

Proof. By using Algorithm 1 presented in Appendix and a computer program. $\hfill \Box$

5. Appendix

In Algorithm 1, we set $H = \{a, b, c, d\}$ and M the family of all nonempty subsets of H. We investigate all hyperoperations on H with desired properties. In order to do this, we assume that A is a 4×4 matrix as the table of hyperoperations on H. Note that the entries of matrix A are the elements of M. The matrix A must be symmetric and each entry on the main diameter is equal to H. Then,

AllHyperList:= the list of all A such that A is a hypergroup with desired properties.

UniqueHyperList:= The list of all desired hypergroups up to isomorphism.

At the beginning, we investigate all possible cases to put the elements of M above the main diameter. Then, we apply Proposition 3.1 to check the associativity. If all 24 conditions of Proposition 3.1 are satisfied, then (H, A) is one of the desired hypergroups and we put it inside AllHyper-List. Afterward, the new A is compared to the elements of AllHyperList to determine the isomorphic. If A is not isomorphic with any element of AllHyperList, then we set A inside UniqueHyperList. We repeat the above process for all cases.

Isomorphism investigation: Let A be a new matrix. We want to check that A is isomorphic to other matrices or not. Suppose that \mathbb{S}_4 is the symmetric group of order 4.We check the isomorphism between A and every element in AllHyperList. If under one of the elements of \mathbb{S}_4 , we obtain an isomorphism, then A is not new. In otherwise, A is nonisomorphic to other matrices in AllHyperList and so we put A inside UniqueHyperList.

In the following we present the algorithm.

Conclusion.

A hypergroup (H, *) is cyclic if there exists $h \in H$ and a natural number s such that $H = h \cup h^2 \cup \cdots h^s \cup \cdots$. If $H = h \cup h^2 \cup \cdots h^s$ then H is cyclic hypergroup with finite period. A hypergroup (H, *) is single power cyclic hypergroup if $H = h \cup h^2 \cup \cdots h^s \cup \cdots$ and $h \cup h^2 \cup \cdots h^{m-1} \subseteq$ h^m for every m. In this paper we enumerated the commutative single power cyclic hypergroups of order 4 and period 2, continuing the study published in [4]. Among the 183398 commutative single power cyclic Algorithm 1: This algorithm finds the list of hypergroups up to isomorphism for n = 4.

```
Algorithm SolveN4()
     H \leftarrow \{1, 2, 3, 4\}
    \triangleright M is the space of all possibility for elements a_{ij}:
    M \leftarrow PowerSet(H) \setminus \{ \emptyset \}
     AllHypersList \leftarrow []
     UniqueHypersList \leftarrow []
     for
each (a_{12}, a_{13}, a_{14}, a_{23}, a_{24}, a_{34}) in M^6 do
          Set a_{ij} = a_{ji} for every 1 \le j < i \le 4
                                                                          \triangleright A is symmetric
          Set a_{ii} = H for every 1 \le i \le 4 >elements on the diameter are
           H.
         \triangleright A, a matrix 4 by 4, is the table of operation. It is
           symmetric and all elements on the diameter are H.
          A \leftarrow (a_{ij})
         \trianglerightChecking 24 conditions to be A be a table of a hypergroup.
           {\bf if} \ Check 24 Conditions (A) \ {\bf then} \\
              \triangleright {\rm Checking} that weather A is isomorphic to the previous
                founded hypergroups.
                if \ NOT \ Is Repeated (HypersList, A) \ then \\
               Add A to UniqueHypersList
              end
               Add A to AllHypersList
          end
    end
    return UniqueHypersList
Procedure IsRepeated(HypersList,A)
    Input : HypersList, a list of hypergroups;
                A, a matrix of the action table of a hypergroup.
     Output: Returns true, if the hypergroup corresponded to A is isomorphic to a
                hypergroup in the list HypersList; Otherwise returns false.
     S \leftarrow Sym(\{1, 2, 3, 4\})
                                         \triangleright S is the symmetric group over \{1, 2, 3, 4\}.
     foreach C = (c_{ij}) in HypersList do
          for each f in S do
              \triangleright \texttt{Define} \ b_{f(i)f(j)} as the image of c_{ij} under permutation f .
               Set b_{f(i)f(j)} := f(c_{ij}) for every 1 \le i, j \le 4
               B \leftarrow (b_{ij})
                                                 ▷Note that b_{f(i)f(j)} = \{f(x) : x \in c_{ij}\}.
              if A = B then
               return true
               end
          end
     end
    return false
```

hypergroups of order four and period two, we obtained that there are 7906 non-isomorph commutative single power cyclic hypergroups.

For future work, we intend to continue our study of cyclicity in hypergroups with other orders and periods.

Acknowledgement.

The author would like to thank the anonymous referees for their very constructive comments.

References

- M. Al Tahan and B. Davvaz, On a special single- power cyclic hypergroup and its automorphisms, Discrete Mathematics, Algorithms and Applications, 8 (4) (2016) 1650059 (12 pages).
- [2] M. Al Tahan and B. Davvaz, On some properties of single power cyclic hypergroups and regular relations, J. Algebra Appl. 16 (11) (2017), 1750214, 14 pp.
- [3] M. Al Tahan and B. Davvaz, Hypermatrix representations of single power cyclic hypergroups, Ital. J. Pure Appl. Math. 38 (2017) 679–696.
- [4] M. Al Tahan and B. Davvaz, Commutative single power cyclic hypergroups of order three and period two, Discrete Mathematics, Algorithms and Applications (DMAA), **19** (5) (2017), 1750070 (15 pages).
- [5] M. Al Tahan, S. Hoskova-Mayerova and B. Davvaz, An overview of topological hypergroupoids, Journal of Intelligent and Fuzzy Systems 34 (3) (2018) 1907– 1916.
- [6] N. Antampoufis and S. Hoskova-Mayerova, A brief survey on the two different approaches of fundamental equivalence relations on hyperstructures, Ratio Mathematica 33 (2017) 47–60.
- [7] P. Corsini, Prolegomena of Hypergroup Theory, Aviani Editore, 1993, 216 pp.
- [8] P. Corsini and V. Leoreanu, Applications of Hyperstructures Theory, Advances in Mathematics, Kluwer Academic Publisher, 2003.
- B. Davvaz, Semihypergroup Theory, Elsevier/Academic Press, London, 2016, viii+156 pp.
- [10] M. De Salvo and D. Freni, Cyclic semihypergroups and hypergroups, (Italian) Atti Sem. Mat. Fis. Univ. Modena 30 (1) (1981), 44–59.
- [11] D. Freni, Cyclic hypergroups and torsion in hypergroups, Matematiche (Catania) 35 (1-2) (1980), 270–286.
- [12] S. Hoskova-Mayerova and A. Maturo, Algebraic hyperstructures and social relations, Italian Journal of Pure and Applied Mathematics 39 (2018), 701–709.
- [13] L. Konguetsof, T. Vougiouklis, M. Kessoglides and S. Spartalis, On cyclic hypergroups with period, Acta Univ. Carolin. Math. Phys. 28 (1) (1987), 3–7.
- [14] V. Leoreanu, About the simplifiable cyclic semihypergroups, Ital. J. Pure Appl. Math. 7 (2000), 69–76.

M. R. Kheradmand and B. Davvaz

- [15] F. Marty, Sur une generalization de la notion de group, In 8th Congress Math. Scandenaves, (1934), 45–49.
- [16] S. Mirvakili, P. Ghiasvand and B. Davvaz, Cyclic modules over fundamental rings derived from strongly regular equivalences, Annales mathematiques du Quebec 41 (2017) 265–276.
- [17] J. Mittas, Hypergroups canoniques, Math. Balkanica 2 (1972), 165–179.
- [18] S.S. Mousavi, V. Leoreanu-Fotea and M. Jafarpour, Cyclic groups obtained as quotient hypergroups. An. Stiint. Univ. Al. I. Cuza Iasi. Mat. (N.S.) 61 (1) (2015), 109-122.
- [19] M. Novak, S. Krehlik and I. Cristea, *Cyclicity in EL Hypergroups*, Symmetry 10 (11) (2018) 611; doi:10.3390/sym10110611
- [20] T. Vougiouklis, Cyclicity in a special class of hypergroups, Acta Univ. Carolin. Math. Phys. 22 (1) (1981), 3–6.
- [21] T. Vougiouklis, *Hyperstructures and Their Representations*, Hadronic Press, Palm Harbor, USA, 1994.

M. R. Kheradmand

Department of Mathematics Yazd University, Yazd, Iran *E-mail*: mohammad.reza.kheradmand.53@gmail.com

B. Davvaz

Department of Mathematics Yazd University, Yazd, Iran *E-mail*: davvaz@yazd.ac.ir