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THE ZEROTH-ORDER GENERAL RANDIĆ INDEX OF

GRAPHS WITH A GIVEN CLIQUE NUMBER

Jianwei Du∗, Yanling Shao, and Xiaoling Sun†

Abstract. The zeroth-order general Randić index 0Rα(G) of the
graph G is defined as

∑
u∈V (G) d(u)α, where d(u) is the degree of

vertex u and α is an arbitrary real number. In this paper, the
maximum value of zeroth-order general Randić index on the graphs
of order n with a given clique number is presented for any α 6= 0, 1
and α /∈ (2, 2n−1], where n = |V (G)|. The minimum value of zeroth-
order general Randić index on the graphs with a given clique number
is also obtained for any α 6= 0, 1. Furthermore, the corresponding
extremal graphs are characterized.

1. Introduction

In this paper, we are concerned with undirected simple connected
graphs only. Let G = (V (G), E(G)) denote a graph with vertex set
V (G) and edge set E(G). The degree of a vertex u ∈ V (G) is denoted
by dG(u) (d(u) for short). Denote by G−uv the graph that obtained from
G by deleting the edge uv ∈ E(G). Similarly, G + uv is the graph that
obtained from G by adding an edge uv /∈ E(G), where u, v ∈ V (G). A
tree is a connected graph with n vertices and n−1 edges. The chromatic
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number of a graph is the minimum number of colors such that the graph
can be colored with these colors in such a way that no two adjacent
vertices have the same color. We use χ(G) to denote the chromatic
number of a graph G. A clique of a graph G is a subset S of V such
that any two vertices in G[S] (the subgraph of G induced by S) are
adjacent. The number of vertices in a largest clique of G is called the
clique number of G, and it is denoted by ω(G). As usual, we use Pn, Sn
and Kn to denote the path, the star and the complete graph of order n,
respectively.

The numerical quantities of a graph which are invariant under graph
isomorphism are called topological indices [27]. The Randić (or connec-
tivity) index of G, which is one of most popular topological indices, is
defined as [23]

R(G) =
∑

uv∈E(G)

(d(u)d(v))−
1
2 .

Randić himself [23] demonstrated that this index is well correlated with a
variety of physico-chemical properties of various classes of organic com-
pounds. Eventually, two books [12,13] are devoted for this structure-
descriptor.

In [3], Bollobás and Erdős generalized R(G) by replacing the exponent
−1/2 with an arbitrary real number α, which is called the general Randić
index and is denoted by Rα, i.e.,

Rα(G) =
∑

uv∈E(G)

(d(u)d(v))α.

The zeroth-order Randić index, conceived by Kier and Hall [14], is

0R(G) =
∑

u∈V (G)

d(u)−
1
2 .

Li and Zheng [20] defined the zeroth-order general Randić index of a
graph G as

0Rα(G) =
∑

u∈V (G)

d(u)α.

for any real number α.
The zeroth-order general Randić index 0R2(G) is the well-known first

Zagreb index M1(G) =
∑

u∈V (G)d(u)2 which is first introduced in [8],
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where Gutman and Trinajstić examined the dependence of total π-
electron energy on molecular structure.
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Fig. 1. The graphs K9,5 and K9,5

Let Kn,n−k and Kn,n−k be the graph obtained by identifying one ver-
tex of Kk with a pendent vertex of path Pn−k+1 and the graph obtained
by identifying one vertex of Kk with the central vertex of star Sn−k+1,
respectively. For example, K9,5 and K9,5 are shown as Fig. 1. A com-
plete k-partite graph whose partition sets differ in size by at most 1 is
called Turán graph, which is denoted by T n(k). Let us denote by χn,k
the set of the n-vertex graphs with chromatic number k, and Wn,k the
set of the n-vertex graphs with clique number k, respectively. We can
see [4] for other notations.

In recent years, the zeroth-order general Randić index has been stud-
ied extensively. Pavlović [22] determined the (n,m)-graph with the
maximum zeroth-order Randić index. Li and Zhao [19] presented trees
with the first three minimum and maximum zeroth-order general Randić
index, they also presented chemical trees with the minimum, second-
minimum and maximum, second-maximum zeroth-order general Randić
index. Zhang et al. [30] characterized the unicyclic graphs with the
first three minimum and maximum zeroth-order general Randić index.
Zhang, Wang and Cheng [31] determined bicyclic graphs with the first
three minimum and maximum zeroth-order general Randić index. Hu,
Li, Shi and Xu [9] obtained some bounds on connected (n,m)-graphs
with the minimum and maximum zeroth-order general Randić index.
Hu, Li, Shi, Xu and Gutman [10] determined the (n,m)-chemical graphs
with the minimum and maximum zeroth-order general Randić index. For
more results see [1,2,5,6,11,15−18,21,24−26,28].

In this paper, we present the maximum value of zeroth-order general
Randić index on Wn,k for any α 6= 0, 1 and α /∈ (2, 2n − 1]. We also
obtain the minimum value of zeroth-order general Randić index on Wn,k

for any α 6= 0, 1. Furthermore, the corresponding extremal graphs are
characterized.
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2. Preliminaries

Note that 0R0(G) = |V (G)| = n and 0R1(G) = 2|E(G)|. Therefore,
in the following we always assume that α 6= 0, 1.

By the definition of zeroth-order general Randić index, these two lem-
mas are obvious and can be found in [28].

Lemma 2.1. ([28]) Let G = (V,E) be a simple connected graph. If
e = uv /∈ E(G), u, v ∈ V (G), then

(i) 0Rα(G) < 0Rα(G+ e) for α > 0;
(ii) 0Rα(G) > 0Rα(G+ e) for α < 0.

Lemma 2.2. ([28]) Let G = (V,E) be a simple connected graph. If
e ∈ E(G), then

(i) 0Rα(G) > 0Rα(G− e) for α > 0;
(ii) 0Rα(G) < 0Rα(G− e) for α < 0.
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Fig. 2. Transformation A1.

Transformation A1: Let G be a graph as shown in Fig. 2, where
xy ∈ E(G), dG(x) ≥ 2, NG(y)/{x} = {y1, y2, · · · , yr} (y1, y2, · · · , yr are
pendant vertices). SetG

′
= G−{yy1, yy2, · · · , yyr}+{xy1, xy2, · · · , xyr},

as shown in Fig. 2.

Lemma 2.3. ([5]) Let G and G
′
be graphs in Fig. 2. Then

(i) 0Rα(G
′
) > 0Rα(G) for α > 1 or α < 0;

(ii) 0Rα(G
′
) < 0Rα(G) for 0 < α < 1.
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Fig. 3. The graphs in Remark 2.4.
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Remark 2.4. By repeating Transformation A1, any tree T attached
to a graphG can be changed into a star as showed in Fig. 3. Furthermore,
the zeroth-order general Randić indices increase for α > 1 or α < 0, and
the zeroth-order general Randić indices decrease for 0 < α < 1.
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Fig. 4. Transformation A2.
Transformation A2: Let G be a graph as shown in Fig. 4, and x, y ∈
V (G), where x1, x2, · · · , xr are pendant vertices adjacent to x, and y1, y2,
· · · , ys are pendant vertices adjacent to y. Set G

′
= G− {yy1, yy2, · · · ,

yys}+{xy1, xy2, · · · , xys}, G
′′

= G−{xx1, xx2, · · · , xxr}+{yx1, yx2, · · · ,
yxr}, as shown in Fig. 4.

Lemma 2.5. Let G, G
′
and G

′′
be graphs in Fig. 4. Then

(i) either 0Rα(G
′
) > 0Rα(G) or 0Rα(G

′′
) > 0Rα(G) for α > 1 or

α < 0;
(ii) either 0Rα(G

′
) < 0Rα(G) or 0Rα(G

′′
) < 0Rα(G) for 0 < α < 1.

Proof. By the definition of zeroth-order general Randić index and the
Lagrange mean value theorem, we have

0Rα(G
′
)− 0Rα(G) = (dG(x) + s)α + (dG(y)− s)α − (dG(x)α + dG(y)α)

= (dG(x) + s)α − dG(x)α − [dG(y)α − (dG(y)− s)α]

= sα(ξα−11 − ηα−11 ),

where dG(x) < ξ1 < dG(x) + s, dG(y)− s < η1 < dG(y).

0Rα(G
′′
)− 0Rα(G) = (dG(x)− r)α + (dG(y) + r)α − (dG(x)α + dG(y)α)

= (dG(y) + r)α − dG(y)α − [dG(x)α − (dG(x)− r)α]

= rα(ηα−12 − ξα−12 ),

where dG(x)− r < ξ2 < dG(x), dG(y) < η2 < dG(y) + r.
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If dG(y) ≤ dG(x), then 0Rα(G
′
)−0Rα(G) > 0, i.e., 0Rα(G

′
) > 0Rα(G)

for α > 1 or α < 0; otherwise, 0Rα(G
′′
) > 0Rα(G) for α > 1 or α < 0.

If dG(y) ≤ dG(x), then 0Rα(G
′
) < 0Rα(G) for 0 < α < 1; otherwise,

0Rα(G
′′
) < 0Rα(G) for 0 < α < 1.
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Fig. 5. Transformation A3.
Transformation A3: Let G be a graph as shown in Fig. 5, where
G1 � K1 and y ∈ V (G1). That is, we use G to denote the graph obtained
from identifying y with the vertex xr of a path x1x2 · · ·xr−1xr · · ·xn,
1 < r < n. Set G

′
= G− xr−1xr + xnxr−1, as shown in Fig. 5.

Lemma 2.6. Let G and G
′
be graphs in Fig. 5. Then

(i) 0Rα(G
′
) < 0Rα(G) for α > 1 or α < 0;

(ii) 0Rα(G
′
) > 0Rα(G) for 0 < α < 1.

Proof. We notice that
0Rα(G

′
)− 0Rα(G) = (dG1(y) + 1)α + 2α − (dG1(y) + 2)α − 1

= 2α − 1− [(dG1(y) + 2)α − (dG1(y) + 1)α]

= α(ξα−1 − ηα−1),
where 1 < ξ < 2, dG1(y)+1 < η < dG1(y)+2. This finishes the proof.
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Fig. 6. The graphs in Remark 2.7.

Remark 2.7. By repeating Transformation A3, any tree T attached
to a graph G can be changed into a path as shown in Fig. 6. Furthermore,
the zeroth-order general Randić indices decrease for α > 1 or α < 0, and
the zeroth-order general Randić indices increase for 0 < α < 1.
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Fig. 7. Transformation A4.

Transformation A4: Let G be a graph as shown in Fig. 7, where x, y ∈
V (G1). That is, we use G to denote the graph obtained from identifying
x with the vertex x0 of a path x0x1 · · ·xr and identifying y with the
vertex y0 of a path y0y1 · · · ys, where r, s ≥ 1. Set G

′
= G− xx1 + ysx1,

as shown in Fig. 7.

Lemma 2.8. Let G and G
′
be graphs in Fig. 7. Then

(i) 0Rα(G
′
) < 0Rα(G) for α > 1 or α < 0;

(ii) 0Rα(G
′
) > 0Rα(G) for 0 < α < 1.

Proof. The proof is similar to Lemma 2.6, omitted.

Lemma 2.9. Let

f(x) = x(n− x)α,

where 1 ≤ x ≤ n − 1, n ≥ 3. Then f ′′(x) < 0 for 0 < α < 1, and
f ′′(x) > 0 for α < 0 or α > 2n− 1.

Proof. Note that

f ′(x) = (n− x)α−1(n− αx− x),

f ′′(x) = −α(n− x)α−2[2n− (α + 1)x].

This completes the proof.

Lemma 2.10. Let ni, nj, t be positive integers and α be a real number,
where nj − ni ≥ 2 and 1 < α ≤ 2. Then

nj(ni + t)α−1 − ni(nj + t)α−1 > 0.

Proof. Let g(x) = (α− 1) ln(x+ t)− lnx, where x ≥ 1. Then

g′(x) =
(α− 2)x− t
x(x+ t)

< 0.
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So g(ni) > g(nj). Thus we have

(α− 1) ln(ni + t)− lnni > (α− 1) ln(nj + t)− lnnj

=⇒ lnnj + (α− 1) ln(ni + t) > lnni + (α− 1) ln(nj + t)

=⇒ ln[nj(ni + t)α−1] > ln[ni(nj + t)α−1]

=⇒nj(ni + t)α−1 > ni(nj + t)α−1.

This completes the proof.

3. Main result

Let G ∈Wn,k. If k = 1, G ∼= K1. If k = n, G ∼= Kn. So, next, we
always assume that 1 < k < n.

Theorem 3.1. Let H1 ∈Wn,k. Then
0Rα(H1) ≥ (k − 1)α+1 + kα +

2α(n − k − 1) + 1 for α > 1, with the equality holding if and only if
H1
∼= Kn,n−k.

Proof. Choose a graph H1 ∈ Wn,k such that H1has the minimum
zeroth-order general Randić index. By the definition of the set Wn,k,
H1 contains a clique Kk as a subgraph. From Lemma 2.2, H1 must be
the graph that results from Kk by attaching some trees rooted at some
vertices of Kk. By Remark 2.7, we conclude that, in H1, all the trees
attached at some vertices of Kk must be paths. Now we claim that
H1
∼= Kn,n−k. Otherwise, suppose that there are two paths P1 and P2

attached at two vertices v1 and v2 of Kk, respectively. From Lemma
2.8, H1 can be changed to H ′1 by transformation A4 with a smaller
zeroth-order general Randić index, which contradicts the choice of H1.
Therefore H1

∼= Kn,n−k.
By the definition of zeroth-order general Randić index, we have

0Rα(Kn,n−k) = (k − 1)α+1 + kα + 2α(n− k − 1) + 1.

The proof is completed.

Theorem 3.2. Let H2 ∈Wn,k. Then
(i) 0Rα(H2) ≥ (k − 1)α+1 + (n− 1)α + n− k for 0 < α < 1, with the

equality holding if and only if H2
∼= Kn,n−k;

(ii) 0Rα(H2) ≤ (k − 1)α+1 + (n − 1)α + n − k for α < 0, with the
equality holding if and only if H2

∼= Kn,n−k.
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Proof. We discuss in two cases.
Case 1. 0 < α < 1.
Choose a graph H2 ∈ Wn,k such that H2 has the minimum zeroth-

order general Randić index. Similarly as the proof of Theorem 3.1, by
Remark 2.4, all the trees in H2 attached at some vertices of Kk must be
stars; furthermore, if H2 �Kn,n−k, from Lemma 2.5, H2 can be changed
to H ′2 or H ′′2 by transformation A2 with a smaller zeroth-order general
Randić index which is a contradiction to the choice of H2. Therefore
H2
∼= Kn,n−k.

Case 2. α < 0.
Choose a graph H2 ∈Wn,k such that H2 has the largest zeroth-order

general Randić index. The rest of the proof is analogous to that of Case
1, omitted.

From the definition of zeroth-order general Randić index, we have
0Rα(Kn,n−k) = (k − 1)α+1 + (n− 1)α + n− k.

The proof is completed.

Let Kn1,n2,··· ,nk
denote the n-vertex complete k-partite graph whose

partition sets size are n1, n2, · · · , nk, respectively. Then n1 + n2 + · · ·+
nk = n.

Lemma 3.3. Let G ∈ χn,k be a graph with maximum zeroth-order
general Randić index for α > 0, and with minimum zeroth-order general
Randić index for α < 0. Then G ∼= Kn1,n2,··· ,nk

.

Proof. By the definition of the set χn,k and Lemma 2.1, the lemma
holds obviously.

In order to get our other results, we first consider the zeroth-order
general Randić indices of graphs G ∈ χn,k. Let n = kp + q, where
0 ≤ q < k, i.e., p = bn

k
c.

Theorem 3.4. Let G ∈ χn,k. Then
(i) 0Rα(G) ≤ 0Rα(Tn(k)) = (k−q)(n−bn

k
c)α+q(bn

k
c+1)(n−bn

k
c−1)α

for 0 < α < 1 or 1 < α ≤ 2, with the equality holding if and only if
G ∼= Tn(k);

(ii) 0Rα(G) ≥ 0Rα(Tn(k)) = (k−q)(n−bn
k
c)α+q(bn

k
c+1)(n−bn

k
c−1)α

for α < 0, with the equality holding if and only if G ∼= Tn(k).

Proof. In view of the definition of chromatic number, any graph G ∈
χn,k has k color classes each of which is an independent set. Let the
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size of the k classes be n1, n2, · · · , nk, respectively. By Lemma 3.3, the
graph G ∈ χn,k which reaches the maximum zeroth-order general Randić
indices for 0 < α < 1 or 1 < α ≤ 2, and reaches the minimum zeroth-
order general Randić indices for α < 0 will be a complete k-partite graph
Kn1,n2,··· ,nk

. Choose the graph G ∈ χn,k such that G has the maximum
zeroth-order general Randić indices for 0 < α < 1 or 1 < α ≤ 2, and has
the minimum zeroth-order general Randić indices for α < 0, respectively.

Now we claim that G ∈ T n(k). Otherwise, there exist two classes of
size ni and nj, respectively, satisfy nj − ni ≥ 2, that is, nj − 1 ≥ ni + 1,
without loss of generality, we assume that 1 ≤ i < j ≤ k. We will find a
contradiction.

Case 1. 0 < α < 1 or 1 < α ≤ 2.
Subcase 1.1. 1 < α ≤ 2.
Note that

0Rα(Kn1,··· ,ni+1,··· ,nj−1,··· ,nk
)− 0Rα(Kn1,··· ,ni,··· ,nj ,··· ,nk

)

=(ni+1)(n−ni−1)α+(nj−1)(n−nj+1)α − ni(n−ni)α − nj(n−nj)α

=nj[(n− nj + 1)α − (n− nj)α]− ni[(n− ni)α − (n− ni − 1)α]

+ (n− ni − 1)α − (n− nj + 1)α

=α(njξ
α−1
1 − niηα−11 ) + (n− ni − 1)α − (n− nj + 1)α,

where n − nj < ξ1 < n − nj + 1, n − ni − 1 < η1 < n − ni. Since
(n− ni − 1) ≥ (n− nj + 1), we have

0Rα(Kn1,··· ,ni+1,··· ,nj−1,··· ,nk
)− 0Rα(Kn1,··· ,ni,··· ,nj ,··· ,nk

)

≥α(njξ
α−1
1 − niηα−11 )

>α[nj(n− nj)α−1 − ni(n− ni)α−1].

If k = 2, then ni + nj = n1 + n2 = n, and we have 0Rα(Kn1+1,n2−1) −
0Rα(Kn1,n2) > α[n2(n − n2)

α−1 − n1(n − n1)
α−1] = α(n1n2)

α−1(n2−α
2 −

n2−α
1 ) ≥ 0, which contradicts the choice of G.

If k ≥ 3, let ni + nj + t = n, where t =
∑k

r=1
r 6=i,j

nr ≥ k − 2 ≥ 1, by

Lemma 2.10, we have

0Rα(Kn1,··· ,ni+1,··· ,nj−1,··· ,nk
)− 0Rα(Kn1,··· ,ni,··· ,nj ,··· ,nk

)

>α[nj(ni + t)α−1 − ni(nj + t)α−1] > 0,

which contradicts the choice of G, again.
Subcase 1.2. 0 < α < 1.
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Note that

0Rα(Kn1,··· ,ni+1,··· ,nj−1,··· ,nk
)− 0Rα(Kn1,··· ,ni,··· ,nj ,··· ,nk

)

=(ni+1)(n−ni−1)α+(nj−1)(n−nj+1)α − ni(n−ni)α − nj(n−nj)α

=f(ni + 1)− f(ni)− [f(nj)− f(nj − 1)]

=f ′(ξ2)− f ′(η2),

where ni < ξ2 < ni+1, nj−1 < η2 < nj. By Lemma 2.9, we have f ′(ξ2)−
f ′(η2) > 0, i.e., 0Rα(Kn1,··· ,ni+1,··· ,nj−1,··· ,nk

) > 0Rα(Kn1,··· ,ni,··· ,nj ,··· ,nk
),

which is a contradiction to the choice of G.
Case 2. α < 0.
Note that

0Rα(Kn1,··· ,ni+1,··· ,nj−1,··· ,nk
)− 0Rα(Kn1,··· ,ni,··· ,nj ,··· ,nk

)

=f(ni + 1)− f(ni)− [f(nj)− f(nj − 1)]

=f ′(ξ3)− f ′(η3),

where ni < ξ3 < ni+1, nj−1 < η3 < nj. By Lemma 2.9, we have f ′(ξ3)−
f ′(η3) < 0, i.e., 0Rα(Kn1,··· ,ni+1,··· ,nj−1,··· ,nk

) < 0Rα(Kn1,··· ,ni,··· ,nj ,··· ,nk
),

which is a contradiction to the choice of G.
Recall that n = kbn

k
c + q = (k − q)bn

k
c + q(bn

k
c + 1). By the defi-

nition of the zeroth-order general Randić index, we obtain the value of
0Rα(T n(k)) immediately.

Conversely, it is easy to see that the equality holds in (i) or (ii) when
G ∼= T n(k). The proof is completed.

Theorem 3.5. Let G ∈ χn,k. Then 0Rα(G) ≤ 0Rα(Kn+1−k,1,1,··· ,1) =
(k − 1)(n− 1)α + (n− k + 1)(k − 1)α for α > 2n− 1, with the equality
holding if and only if G ∼= Kn+1−k,1,1,··· ,1, where Kn+1−k,1,1,··· ,1 is the
complete k-partite graph with n vertices whose partition sets size are
n+ 1− k, 1, 1, · · · , 1, respectively.

Proof. Similar to the proof of theorem 3.4, the graph G ∈ χn,k which
reaches the maximum zeroth-order general Randić indices for α > 2n−1
will be a complete k-partite graph Kn1,n2,··· ,nk

. Suppose that the graph
G ∈ χn,k has the maximum zeroth-order general Randić indices for
α > 2n− 1.

Now we claim that G ∈ Kn+1−k,1,1,··· ,1. Otherwise, there exist two
classes of size ni and nj, respectively, satisfy nj ≥ ni ≥ 2, without loss
of generality, we assume that 1 ≤ i < j ≤ k.
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Note that
0Rα(Kn1,··· ,ni−1,··· ,nj+1,··· ,nk

)− 0Rα(Kn1,··· ,ni,··· ,nj ,··· ,nk
)

=f(nj + 1)− f(nj)− [f(ni)− f(ni − 1)]

=f ′(ξ)− f ′(η),

where nj < ξ < nj + 1, ni− 1 < η < ni. By Lemma 2.9, we have f ′(ξ)−
f ′(η) > 0, i.e., 0Rα(Kn1,··· ,ni−1,··· ,nj+1,··· ,nk

) > 0Rα(Kn1,··· ,ni,··· ,nj ,··· ,nk
),

which contradicts the choice of G.
From the definition of zeroth-order general Randić index, we have

0Rα(Kn+1−k,1,1,··· ,1) = (k − 1)(n− 1)α + (n− k + 1)(k − 1)α.

Conversely, it is easy to see that the equality holds when G ∼= Kn+1−k,

1,1,··· ,1. This completes the proof.

Lemma 3.6. ([7]) Let G = (V,E) be a graph with ω(G) ≤ k. Then
there is a k-partite graph G′ = (V,E ′) such that for every vertex v ∈ V ,
dG(v) ≤ dG′(v).

Theorem 3.7. Let G ∈Wn,k. Then
(i) 0Rα(G) ≤ (k−q)(n−bn

k
c)α+q(bn

k
c+1)(n−bn

k
c−1)α for 0 < α < 1

or 1 < α ≤ 2, with the equality holding if and only if G ∼= Tn(k);
(ii) 0Rα(G) ≥ (k− q)(n−bn

k
c)α + q(bn

k
c+ 1)(n−bn

k
c− 1)α for α < 0,

with the equality holding if and only if G ∼= Tn(k).
(iii) 0Rα(G) ≤ (k − 1)(n − 1)α + (n − k + 1)(k − 1)α for α > 2n −

1, with the equality holding if and only if G ∼= Kn+1−k,1,1,··· ,1, where
Kn+1−k,1,1,··· ,1 is the complete k-partite graph of order n whose partition
sets size are n+ 1− k, 1, 1, · · · , 1, respectively.

Proof. If k = n, then G ∼= Kn. Thus, we assume that k < n. Pick
a graph G ∈Wn,k such that G has the maximum zeroth-order general
Randić indices for 0 < α < 1, 1 < α ≤ 2 or α > 2n − 1, and has the
minimum zeroth-order general Randić indices for α < 0, respectively.
Now we claim that G ∈ χn,k. To the contrary, since ω(G) = k, by
Lemma 3.6, we can get a k-partite graph G∗ with V (G∗) = V (G) such
that for every vertex v ∈ V (G) = V (G∗), dG(v) ≤ dG∗(v). Obviously,
G∗ ∈Wn,k. By the definition of zeroth-order general Randić index, we
have 0Rα(G∗) ≥ 0Rα(G) for 0 < α < 1, 1 < α ≤ 2 or α > 2n − 1, and
0Rα(G∗) ≤ 0Rα(G) for α < 0, respectively.

By Theorem 3.4 and 3.5, considering the uniqueness of the extremal
graph in the set χn,k, the theorem holds immediately.
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If α = 2, then 0R2(G) is the first Zagreb index M1(G) and by using
α = 2 in Theorem 3.5 and 3.6, we obtain the following corollary which
is the result given in [29].

Corollary 3.8. ([29])Let G ∈Wn,k. Then
(i) M1(G) ≤ (k − q)(n − bn

k
c)2 + qdn

k
e(n − dn

k
e)2 with the equality

holding if and only if G ∼= Tn(k);
(ii) M1(G) ≥ k3 − 2k2 − k + 4n− 4 with the equality holding if and

only if G ∼= Kn,n−k.

Remark 3.9. Another question is to consider the maximum zeroth-
order general Randić index for α ∈ (2, 2n− 1] on the graphs G ∈Wn,k.
By inspecting some special graphs G ∈ Wn,k, we found that for α ∈
(2, a), Tn(k) has maximum zeroth-order general Randić index, and for
α ∈ (b, 2n−1], Kn+1−k,1,1,··· ,1 has maximum zeroth-order general Randić
index, where a ≤ b. So further research is needed in future.

4. Conclusion

In this article, for G ∈Wn,k, we got that Kn,n−k (resp. Tn(k)) has
the maximum (resp. minimum) 0Rα(G) for α < 0, and Tn(k) (resp.
Kn,n−k) has the maximum (resp. minimum) 0Rα(G) for 0 < α < 1.
Furthermore, for G ∈ Wn,k, we proved that Kn,n−k has the minimum
0Rα(G) for α > 1, and Tn(k) (resp. Kn+1−k,1,1,··· ,1) has the maximum
0Rα(G) for 1 < α ≤ 2 (resp. for α > 2n− 1).

The maximum 0Rα(G) for α ∈ (2, 2n − 1] on the graphs G ∈ Wn,k

has not been obtained. By inspecting some special graphs G ∈ Wn,k,
it seems that for α ∈ (2, a), Tn(k) has maximum 0Rα(G), and for α ∈
(b, 2n−1], Kn+1−k,1,1,··· ,1 has maximum 0Rα(G), where a ≤ b. So further
study is needed in future.
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tus graphs, AKCE Int. J. Graphs Comb. (2018), https://doi.org/10.1016/j.akcej.
2018.01.006.

[2] A. Ali, A. A. Bhatti and Z. Raza, A note on the zeroth-order general Randić
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[8] I. Gutman and N. Trinajstić, Graph theory and molecular orbitals. III. Total

π-electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17 (1972), 535–
538.

[9] Y. Hu, X. Li, Y. Shi and T. Xu, Connected (n,m)-graphs with minimum and
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