THE ZEROTH-ORDER GENERAL RANDIĆ INDEX OF GRAPHS WITH A GIVEN CLIQUE NUMBER

Jianwei Du*, Yanling Shao, and Xiaoling Sun ${ }^{\dagger}$

Abstract

The zeroth-order general Randić index ${ }^{0} R_{\alpha}(G)$ of the graph G is defined as $\sum_{u \in V(G)} d(u)^{\alpha}$, where $d(u)$ is the degree of vertex u and α is an arbitrary real number. In this paper, the maximum value of zeroth-order general Randić index on the graphs of order n with a given clique number is presented for any $\alpha \neq 0,1$ and $\alpha \notin(2,2 n-1]$, where $n=|V(G)|$. The minimum value of zerothorder general Randić index on the graphs with a given clique number is also obtained for any $\alpha \neq 0,1$. Furthermore, the corresponding extremal graphs are characterized.

1. Introduction

In this paper, we are concerned with undirected simple connected graphs only. Let $G=(V(G), E(G))$ denote a graph with vertex set $V(G)$ and edge set $E(G)$. The degree of a vertex $u \in V(G)$ is denoted by $d_{G}(u)(d(u)$ for short). Denote by $G-u v$ the graph that obtained from G by deleting the edge $u v \in E(G)$. Similarly, $G+u v$ is the graph that obtained from G by adding an edge $u v \notin E(G)$, where $u, v \in V(G)$. A tree is a connected graph with n vertices and $n-1$ edges. The chromatic

[^0]number of a graph is the minimum number of colors such that the graph can be colored with these colors in such a way that no two adjacent vertices have the same color. We use $\chi(G)$ to denote the chromatic number of a graph G. A clique of a graph G is a subset S of V such that any two vertices in $G[S]$ (the subgraph of G induced by S) are adjacent. The number of vertices in a largest clique of G is called the clique number of G, and it is denoted by $\omega(G)$. As usual, we use P_{n}, S_{n} and K_{n} to denote the path, the star and the complete graph of order n, respectively.

The numerical quantities of a graph which are invariant under graph isomorphism are called topological indices [27]. The Randić (or connectivity) index of G, which is one of most popular topological indices, is defined as [23]

$$
R(G)=\sum_{u v \in E(G)}(d(u) d(v))^{-\frac{1}{2}} .
$$

Randić himself [23] demonstrated that this index is well correlated with a variety of physico-chemical properties of various classes of organic compounds. Eventually, two books $[12,13]$ are devoted for this structuredescriptor.

In [3], Bollobás and Erdős generalized $R(G)$ by replacing the exponent $-1 / 2$ with an arbitrary real number α, which is called the general Randić index and is denoted by R_{α}, i.e.,

$$
R_{\alpha}(G)=\sum_{u v \in E(G)}(d(u) d(v))^{\alpha} .
$$

The zeroth-order Randić index, conceived by Kier and Hall [14], is

$$
{ }^{0} R(G)=\sum_{u \in V(G)} d(u)^{-\frac{1}{2}} .
$$

Li and Zheng [20] defined the zeroth-order general Randić index of a graph G as

$$
{ }^{0} R_{\alpha}(G)=\sum_{u \in V(G)} d(u)^{\alpha}
$$

for any real number α.
The zeroth-order general Randić index ${ }^{0} R_{2}(G)$ is the well-known first Zagreb index $M_{1}(G)=\sum_{u \in V(G)} d(u)^{2}$ which is first introduced in [8],
where Gutman and Trinajstić examined the dependence of total π electron energy on molecular structure.

Fig. 1. The graphs $\boldsymbol{\mathcal { K }}_{9,5}$ and $\boldsymbol{K}_{9,5}$
Let $\mathcal{K}_{n, n-k}$ and $\boldsymbol{K}_{n, n-k}$ be the graph obtained by identifying one vertex of K_{k} with a pendent vertex of path P_{n-k+1} and the graph obtained by identifying one vertex of K_{k} with the central vertex of star S_{n-k+1}, respectively. For example, $\boldsymbol{\mathcal { K }}_{9,5}$ and $\boldsymbol{K}_{9,5}$ are shown as Fig. 1. A complete k-partite graph whose partition sets differ in size by at most 1 is called Turán graph, which is denoted by $\boldsymbol{T}_{n}(k)$. Let us denote by $\chi_{n, k}$ the set of the n-vertex graphs with chromatic number k, and $\mathcal{W}_{n, k}$ the set of the n-vertex graphs with clique number k, respectively. We can see [4] for other notations.

In recent years, the zeroth-order general Randić index has been studied extensively. Pavlović [22] determined the (n, m)-graph with the maximum zeroth-order Randić index. Li and Zhao [19] presented trees with the first three minimum and maximum zeroth-order general Randić index, they also presented chemical trees with the minimum, secondminimum and maximum, second-maximum zeroth-order general Randić index. Zhang et al. [30] characterized the unicyclic graphs with the first three minimum and maximum zeroth-order general Randić index. Zhang, Wang and Cheng [31] determined bicyclic graphs with the first three minimum and maximum zeroth-order general Randić index. Hu, Li, Shi and Xu [9] obtained some bounds on connected (n, m)-graphs with the minimum and maximum zeroth-order general Randić index. $\mathrm{Hu}, \mathrm{Li}, \mathrm{Shi}, \mathrm{Xu}$ and Gutman [10] determined the (n, m)-chemical graphs with the minimum and maximum zeroth-order general Randić index. For more results see $[1,2,5,6,11,15-18,21,24-26,28]$.

In this paper, we present the maximum value of zeroth-order general Randić index on $\mathcal{W}_{n, k}$ for any $\alpha \neq 0,1$ and $\alpha \notin(2,2 n-1]$. We also obtain the minimum value of zeroth-order general Randić index on $\mathcal{W}_{n, k}$ for any $\alpha \neq 0,1$. Furthermore, the corresponding extremal graphs are characterized.

2. Preliminaries

Note that ${ }^{0} R_{0}(G)=|V(G)|=n$ and ${ }^{0} R_{1}(G)=2|E(G)|$. Therefore, in the following we always assume that $\alpha \neq 0,1$.

By the definition of zeroth-order general Randić index, these two lemmas are obvious and can be found in [28].

Lemma 2.1. ([28]) Let $G=(V, E)$ be a simple connected graph. If $e=u v \notin E(G), u, v \in V(G)$, then
(i) ${ }^{0} R_{\alpha}(G)<{ }^{0} R_{\alpha}(G+e)$ for $\alpha>0$;
(ii) ${ }^{0} R_{\alpha}(G)>{ }^{0} R_{\alpha}(G+e)$ for $\alpha<0$.

Lemma 2.2. ([28]) Let $G=(V, E)$ be a simple connected graph. If $e \in E(G)$, then
(i) ${ }^{0} R_{\alpha}(G)>{ }^{0} R_{\alpha}(G-e)$ for $\alpha>0$;
(ii) ${ }^{0} R_{\alpha}(G)<{ }^{0} R_{\alpha}(G-e)$ for $\alpha<0$.

Fig. 2. Transformation A_{1}.
Transformation A_{1} : Let G be a graph as shown in Fig. 2, where $x y \in E(G), d_{G}(x) \geq 2, N_{G}(y) /\{x\}=\left\{y_{1}, y_{2}, \cdots, y_{r}\right\}\left(y_{1}, y_{2}, \cdots, y_{r}\right.$ are pendant vertices). Set $G^{\prime}=G-\left\{y y_{1}, y y_{2}, \cdots, y y_{r}\right\}+\left\{x y_{1}, x y_{2}, \cdots, x y_{r}\right\}$, as shown in Fig. 2.

Lemma 2.3. ([5]) Let G and G^{\prime} be graphs in Fig. 2. Then
(i) ${ }^{0} R_{\alpha}\left(G^{\prime}\right)>{ }^{0} R_{\alpha}(G)$ for $\alpha>1$ or $\alpha<0$;
(ii) ${ }^{0} R_{\alpha}\left(G^{\prime}\right)<{ }^{0} R_{\alpha}(G)$ for $0<\alpha<1$.

Fig. 3. The graphs in Remark 2.4.

Remark 2.4. By repeating Transformation A_{1}, any tree T attached to a graph G can be changed into a star as showed in Fig. 3. Furthermore, the zeroth-order general Randić indices increase for $\alpha>1$ or $\alpha<0$, and the zeroth-order general Randić indices decrease for $0<\alpha<1$.

Fig. 4. Transformation A_{2}.
Transformation A_{2} : Let G be a graph as shown in Fig. 4, and $x, y \in$ $V(G)$, where $x_{1}, x_{2}, \cdots, x_{r}$ are pendant vertices adjacent to x, and y_{1}, y_{2}, \cdots, y_{s} are pendant vertices adjacent to y. Set $G^{\prime}=G-\left\{y y_{1}, y y_{2}, \cdots\right.$, $\left.y y_{s}\right\}+\left\{x y_{1}, x y_{2}, \cdots, x y_{s}\right\}, G^{\prime \prime}=G-\left\{x x_{1}, x x_{2}, \cdots, x x_{r}\right\}+\left\{y x_{1}, y x_{2}, \cdots\right.$, $\left.y x_{r}\right\}$, as shown in Fig. 4.

Lemma 2.5. Let G, G^{\prime} and $G^{\prime \prime}$ be graphs in Fig. 4. Then
(i) either ${ }^{0} R_{\alpha}\left(G^{\prime}\right)>{ }^{0} R_{\alpha}(G)$ or ${ }^{0} R_{\alpha}\left(G^{\prime \prime}\right)>{ }^{0} R_{\alpha}(G)$ for $\alpha>1$ or $\alpha<0$;
(ii) either ${ }^{0} R_{\alpha}\left(G^{\prime}\right)<{ }^{0} R_{\alpha}(G)$ or ${ }^{0} R_{\alpha}\left(G^{\prime \prime}\right)<{ }^{0} R_{\alpha}(G)$ for $0<\alpha<1$.

Proof. By the definition of zeroth-order general Randić index and the Lagrange mean value theorem, we have

$$
\begin{aligned}
{ }^{0} R_{\alpha}\left(G^{\prime}\right)-{ }^{0} R_{\alpha}(G) & =\left(d_{G}(x)+s\right)^{\alpha}+\left(d_{G}(y)-s\right)^{\alpha}-\left(d_{G}(x)^{\alpha}+d_{G}(y)^{\alpha}\right) \\
& =\left(d_{G}(x)+s\right)^{\alpha}-d_{G}(x)^{\alpha}-\left[d_{G}(y)^{\alpha}-\left(d_{G}(y)-s\right)^{\alpha}\right] \\
& =s \alpha\left(\xi_{1}^{\alpha-1}-\eta_{1}^{\alpha-1}\right)
\end{aligned}
$$

where $d_{G}(x)<\xi_{1}<d_{G}(x)+s, d_{G}(y)-s<\eta_{1}<d_{G}(y)$.

$$
\begin{aligned}
{ }^{0} R_{\alpha}\left(G^{\prime \prime}\right)-{ }^{0} R_{\alpha}(G) & =\left(d_{G}(x)-r\right)^{\alpha}+\left(d_{G}(y)+r\right)^{\alpha}-\left(d_{G}(x)^{\alpha}+d_{G}(y)^{\alpha}\right) \\
& =\left(d_{G}(y)+r\right)^{\alpha}-d_{G}(y)^{\alpha}-\left[d_{G}(x)^{\alpha}-\left(d_{G}(x)-r\right)^{\alpha}\right] \\
& =r \alpha\left(\eta_{2}^{\alpha-1}-\xi_{2}^{\alpha-1}\right)
\end{aligned}
$$

where $d_{G}(x)-r<\xi_{2}<d_{G}(x), d_{G}(y)<\eta_{2}<d_{G}(y)+r$.

If $d_{G}(y) \leq d_{G}(x)$, then ${ }^{0} R_{\alpha}\left(G^{\prime}\right)-{ }^{0} R_{\alpha}(G)>0$, i.e., ${ }^{0} R_{\alpha}\left(G^{\prime}\right)>{ }^{0} R_{\alpha}(G)$ for $\alpha>1$ or $\alpha<0$; otherwise, ${ }^{0} R_{\alpha}\left(G^{\prime \prime}\right)>{ }^{0} R_{\alpha}(G)$ for $\alpha>1$ or $\alpha<0$.

If $d_{G}(y) \leq d_{G}(x)$, then ${ }^{0} R_{\alpha}\left(G^{\prime}\right)<{ }^{0} R_{\alpha}(G)$ for $0<\alpha<1$; otherwise, ${ }^{0} R_{\alpha}\left(G^{\prime \prime}\right)<{ }^{0} R_{\alpha}(G)$ for $0<\alpha<1$.

Fig. 5. Transformation A_{3}.
Transformation A_{3} : Let G be a graph as shown in Fig. 5, where $G_{1} \not \not K_{1}$ and $y \in V\left(G_{1}\right)$. That is, we use G to denote the graph obtained from identifying y with the vertex x_{r} of a path $x_{1} x_{2} \cdots x_{r-1} x_{r} \cdots x_{n}$, $1<r<n$. Set $G^{\prime}=G-x_{r-1} x_{r}+x_{n} x_{r-1}$, as shown in Fig. 5 .

Lemma 2.6. Let G and G^{\prime} be graphs in Fig. 5. Then
(i) ${ }^{0} R_{\alpha}\left(G^{\prime}\right)<{ }^{0} R_{\alpha}(G)$ for $\alpha>1$ or $\alpha<0$;
(ii) ${ }^{0} R_{\alpha}\left(G^{\prime}\right)>{ }^{0} R_{\alpha}(G)$ for $0<\alpha<1$.

Proof. We notice that

$$
\begin{aligned}
{ }^{0} R_{\alpha}\left(G^{\prime}\right)-{ }^{0} R_{\alpha}(G) & =\left(d_{G_{1}}(y)+1\right)^{\alpha}+2^{\alpha}-\left(d_{G_{1}}(y)+2\right)^{\alpha}-1 \\
& =2^{\alpha}-1-\left[\left(d_{G_{1}}(y)+2\right)^{\alpha}-\left(d_{G_{1}}(y)+1\right)^{\alpha}\right] \\
& =\alpha\left(\xi^{\alpha-1}-\eta^{\alpha-1}\right),
\end{aligned}
$$

where $1<\xi<2, d_{G_{1}}(y)+1<\eta<d_{G_{1}}(y)+2$. This finishes the proof.

Fig. 6. The graphs in Remark 2.7.
Remark 2.7. By repeating Transformation A_{3}, any tree T attached to a graph G can be changed into a path as shown in Fig. 6. Furthermore, the zeroth-order general Randić indices decrease for $\alpha>1$ or $\alpha<0$, and the zeroth-order general Randić indices increase for $0<\alpha<1$.

Fig. 7. Transformation A_{4}.
Transformation A_{4} : Let G be a graph as shown in Fig. 7, where $x, y \in$ $V\left(G_{1}\right)$. That is, we use G to denote the graph obtained from identifying x with the vertex x_{0} of a path $x_{0} x_{1} \cdots x_{r}$ and identifying y with the vertex y_{0} of a path $y_{0} y_{1} \cdots y_{s}$, where $r, s \geq 1$. Set $G^{\prime}=G-x x_{1}+y_{s} x_{1}$, as shown in Fig. 7.

Lemma 2.8. Let G and G^{\prime} be graphs in Fig. 7. Then
(i) ${ }^{0} R_{\alpha}\left(G^{\prime}\right)<{ }^{0} R_{\alpha}(G)$ for $\alpha>1$ or $\alpha<0$;
(ii) ${ }^{0} R_{\alpha}\left(G^{\prime}\right)>{ }^{0} R_{\alpha}(G)$ for $0<\alpha<1$.

Proof. The proof is similar to Lemma 2.6, omitted.
Lemma 2.9. Let

$$
f(x)=x(n-x)^{\alpha},
$$

where $1 \leq x \leq n-1, n \geq 3$. Then $f^{\prime \prime}(x)<0$ for $0<\alpha<1$, and $f^{\prime \prime}(x)>0$ for $\alpha<0$ or $\alpha>2 n-1$.

Proof. Note that

$$
\begin{aligned}
& f^{\prime}(x)=(n-x)^{\alpha-1}(n-\alpha x-x), \\
& f^{\prime \prime}(x)=-\alpha(n-x)^{\alpha-2}[2 n-(\alpha+1) x] .
\end{aligned}
$$

This completes the proof.
Lemma 2.10. Let n_{i}, n_{j}, t be positive integers and α be a real number, where $n_{j}-n_{i} \geq 2$ and $1<\alpha \leq 2$. Then

$$
n_{j}\left(n_{i}+t\right)^{\alpha-1}-n_{i}\left(n_{j}+t\right)^{\alpha-1}>0 .
$$

Proof. Let $g(x)=(\alpha-1) \ln (x+t)-\ln x$, where $x \geq 1$. Then

$$
g^{\prime}(x)=\frac{(\alpha-2) x-t}{x(x+t)}<0 .
$$

So $g\left(n_{i}\right)>g\left(n_{j}\right)$. Thus we have

$$
\begin{aligned}
& (\alpha-1) \ln \left(n_{i}+t\right)-\ln n_{i}>(\alpha-1) \ln \left(n_{j}+t\right)-\ln n_{j} \\
\Longrightarrow & \ln n_{j}+(\alpha-1) \ln \left(n_{i}+t\right)>\ln n_{i}+(\alpha-1) \ln \left(n_{j}+t\right) \\
\Longrightarrow & \ln \left[n_{j}\left(n_{i}+t\right)^{\alpha-1}\right]>\ln \left[n_{i}\left(n_{j}+t\right)^{\alpha-1}\right] \\
\Longrightarrow & n_{j}\left(n_{i}+t\right)^{\alpha-1}>n_{i}\left(n_{j}+t\right)^{\alpha-1} .
\end{aligned}
$$

This completes the proof.

3. Main result

Let $G \in \mathcal{W}_{n, k}$. If $k=1, G \cong K_{1}$. If $k=n, G \cong K_{n}$. So, next, we always assume that $1<k<n$.

Theorem 3.1. Let $H_{1} \in \mathcal{W}_{n, k}$. Then ${ }^{0} R_{\alpha}\left(H_{1}\right) \geq(k-1)^{\alpha+1}+k^{\alpha}+$ $2^{\alpha}(n-k-1)+1$ for $\alpha>1$, with the equality holding if and only if $H_{1} \cong \mathcal{K}_{n, n-k}$.

Proof. Choose a graph $H_{1} \in \mathcal{W}_{n, k}$ such that H_{1} has the minimum zeroth-order general Randić index. By the definition of the set $\mathcal{W}_{n, k}$, H_{1} contains a clique K_{k} as a subgraph. From Lemma 2.2, H_{1} must be the graph that results from K_{k} by attaching some trees rooted at some vertices of K_{k}. By Remark 2.7, we conclude that, in H_{1}, all the trees attached at some vertices of K_{k} must be paths. Now we claim that $H_{1} \cong \mathcal{K}_{n, n-k}$. Otherwise, suppose that there are two paths P_{1} and P_{2} attached at two vertices v_{1} and v_{2} of K_{k}, respectively. From Lemma 2.8, H_{1} can be changed to H_{1}^{\prime} by transformation A_{4} with a smaller zeroth-order general Randić index, which contradicts the choice of H_{1}. Therefore $H_{1} \cong \mathcal{K}_{n, n-k}$.

By the definition of zeroth-order general Randić index, we have

$$
{ }^{0} R_{\alpha}\left(\mathcal{K}_{n, n-k}\right)=(k-1)^{\alpha+1}+k^{\alpha}+2^{\alpha}(n-k-1)+1 .
$$

The proof is completed.
Theorem 3.2. Let $H_{2} \in \mathcal{W}_{n, k}$. Then
(i) ${ }^{0} R_{\alpha}\left(H_{2}\right) \geq(k-1)^{\alpha+1}+(n-1)^{\alpha}+n-k$ for $0<\alpha<1$, with the equality holding if and only if $H_{2} \cong \boldsymbol{K}_{n, n-k}$;
(ii) ${ }^{0} R_{\alpha}\left(H_{2}\right) \leq(k-1)^{\alpha+1}+(n-1)^{\alpha}+n-k$ for $\alpha<0$, with the equality holding if and only if $H_{2} \cong \boldsymbol{K}_{n, n-k}$.

Proof. We discuss in two cases.
Case 1. $0<\alpha<1$.
Choose a graph $H_{2} \in \mathcal{W}_{n, k}$ such that H_{2} has the minimum zerothorder general Randić index. Similarly as the proof of Theorem 3.1, by Remark 2.4, all the trees in H_{2} attached at some vertices of K_{k} must be stars; furthermore, if $H_{2} \not \not \boldsymbol{K}_{n, n-k}$, from Lemma $2.5, H_{2}$ can be changed to H_{2}^{\prime} or $H_{2}^{\prime \prime}$ by transformation A_{2} with a smaller zeroth-order general Randić index which is a contradiction to the choice of H_{2}. Therefore $H_{2} \cong \boldsymbol{K}_{n, n-k}$.

Case 2. $\alpha<0$.
Choose a graph $H_{2} \in \mathcal{W}_{n, k}$ such that H_{2} has the largest zeroth-order general Randić index. The rest of the proof is analogous to that of Case 1, omitted.

From the definition of zeroth-order general Randić index, we have

$$
{ }^{0} R_{\alpha}\left(\boldsymbol{K}_{n, n-k}\right)=(k-1)^{\alpha+1}+(n-1)^{\alpha}+n-k .
$$

The proof is completed.
Let $K_{n_{1}, n_{2}, \cdots, n_{k}}$ denote the n-vertex complete k-partite graph whose partition sets size are $n_{1}, n_{2}, \cdots, n_{k}$, respectively. Then $n_{1}+n_{2}+\cdots+$ $n_{k}=n$.

Lemma 3.3. Let $G \in \chi_{n, k}$ be a graph with maximum zeroth-order general Randić index for $\alpha>0$, and with minimum zeroth-order general Randić index for $\alpha<0$. Then $G \cong K_{n_{1}, n_{2}, \cdots, n_{k}}$.

Proof. By the definition of the set $\boldsymbol{\chi}_{n, k}$ and Lemma 2.1, the lemma holds obviously.

In order to get our other results, we first consider the zeroth-order general Randić indices of graphs $G \in \chi_{n, k}$. Let $n=k p+q$, where $0 \leq q<k$, i.e., $p=\left\lfloor\frac{n}{k}\right\rfloor$.

Theorem 3.4. Let $G \in \chi_{n, k}$. Then
$(i){ }^{0} R_{\alpha}(G) \leq{ }^{0} R_{\alpha}\left(\boldsymbol{T}_{n}(k)\right)=(k-q)\left(n-\left\lfloor\frac{n}{k}\right\rfloor\right)^{\alpha}+q\left(\left\lfloor\frac{n}{k}\right\rfloor+1\right)\left(n-\left\lfloor\frac{n}{k}\right\rfloor-1\right)^{\alpha}$
for $0<\alpha<1$ or $1<\alpha \leq 2$, with the equality holding if and only if $G \cong \boldsymbol{T}_{n}(k) ;$
$(i i){ }^{0} R_{\alpha}(G) \geq{ }^{0} R_{\alpha}\left(\boldsymbol{T}_{n}(k)\right)=(k-q)\left(n-\left\lfloor\frac{n}{k}\right\rfloor\right)^{\alpha}+q\left(\left\lfloor\frac{n}{k}\right\rfloor+1\right)\left(n-\left\lfloor\frac{n}{k}\right\rfloor-1\right)^{\alpha}$ for $\alpha<0$, with the equality holding if and only if $G \cong \boldsymbol{T}_{n}(k)$.

Proof. In view of the definition of chromatic number, any graph $G \in$ $\chi_{n, k}$ has k color classes each of which is an independent set. Let the
size of the k classes be $n_{1}, n_{2}, \cdots, n_{k}$, respectively. By Lemma 3.3, the graph $G \in \chi_{n, k}$ which reaches the maximum zeroth-order general Randić indices for $0<\alpha<1$ or $1<\alpha \leq 2$, and reaches the minimum zerothorder general Randić indices for $\alpha<0$ will be a complete k-partite graph $K_{n_{1}, n_{2}, \cdots, n_{k}}$. Choose the graph $G \in \chi_{n, k}$ such that G has the maximum zeroth-order general Randić indices for $0<\alpha<1$ or $1<\alpha \leq 2$, and has the minimum zeroth-order general Randić indices for $\alpha<0$, respectively.

Now we claim that $G \in \boldsymbol{T}_{n}(k)$. Otherwise, there exist two classes of size n_{i} and n_{j}, respectively, satisfy $n_{j}-n_{i} \geq 2$, that is, $n_{j}-1 \geq n_{i}+1$, without loss of generality, we assume that $1 \leq i<j \leq k$. We will find a contradiction.

Case 1. $0<\alpha<1$ or $1<\alpha \leq 2$.
Subcase 1.1. $1<\alpha \leq 2$.
Note that

$$
\begin{aligned}
& { }^{0} R_{\alpha}\left(K_{n_{1}, \cdots, n_{i}+1, \cdots, n_{j}-1, \cdots, n_{k}}\right)-{ }^{0} R_{\alpha}\left(K_{n_{1}, \cdots, n_{i}, \cdots, n_{j}, \cdots, n_{k}}\right) \\
= & \left(n_{i}+1\right)\left(n-n_{i}-1\right)^{\alpha}+\left(n_{j}-1\right)\left(n-n_{j}+1\right)^{\alpha}-n_{i}\left(n-n_{i}\right)^{\alpha}-n_{j}\left(n-n_{j}\right)^{\alpha} \\
= & n_{j}\left[\left(n-n_{j}+1\right)^{\alpha}-\left(n-n_{j}\right)^{\alpha}\right]-n_{i}\left[\left(n-n_{i}\right)^{\alpha}-\left(n-n_{i}-1\right)^{\alpha}\right] \\
& +\left(n-n_{i}-1\right)^{\alpha}-\left(n-n_{j}+1\right)^{\alpha} \\
= & \alpha\left(n_{j} \xi_{1}^{\alpha-1}-n_{i} \eta_{1}^{\alpha-1}\right)+\left(n-n_{i}-1\right)^{\alpha}-\left(n-n_{j}+1\right)^{\alpha},
\end{aligned}
$$

where $n-n_{j}<\xi_{1}<n-n_{j}+1, n-n_{i}-1<\eta_{1}<n-n_{i}$. Since $\left(n-n_{i}-1\right) \geq\left(n-n_{j}+1\right)$, we have

$$
\begin{aligned}
& { }^{0} R_{\alpha}\left(K_{n_{1}, \cdots, n_{i}+1, \cdots, n_{j}-1, \cdots, n_{k}}\right)-{ }^{0} R_{\alpha}\left(K_{n_{1}, \cdots, n_{i}, \cdots, n_{j}, \cdots, n_{k}}\right) \\
\geq & \alpha\left(n_{j} \xi_{1}^{\alpha-1}-n_{i} \eta_{1}^{\alpha-1}\right) \\
> & \alpha\left[n_{j}\left(n-n_{j}\right)^{\alpha-1}-n_{i}\left(n-n_{i}\right)^{\alpha-1}\right] .
\end{aligned}
$$

If $k=2$, then $n_{i}+n_{j}=n_{1}+n_{2}=n$, and we have ${ }^{0} R_{\alpha}\left(K_{n_{1}+1, n_{2}-1}\right)-$ ${ }^{0} R_{\alpha}\left(K_{n_{1}, n_{2}}\right)>\alpha\left[n_{2}\left(n-n_{2}\right)^{\alpha-1}-n_{1}\left(n-n_{1}\right)^{\alpha-1}\right]=\alpha\left(n_{1} n_{2}\right)^{\alpha-1}\left(n_{2}^{2-\alpha}-\right.$ $\left.n_{1}^{2-\alpha}\right) \geq 0$, which contradicts the choice of G.

If $k \geq 3$, let $n_{i}+n_{j}+t=n$, where $t=\sum_{\substack{r=1, j \\ r \neq i, j}}^{k} n_{r} \geq k-2 \geq 1$, by Lemma 2.10, we have

$$
\begin{aligned}
& { }^{0} R_{\alpha}\left(K_{n_{1}, \cdots, n_{i}+1, \cdots, n_{j}-1, \cdots, n_{k}}\right)-{ }^{0} R_{\alpha}\left(K_{n_{1}, \cdots, n_{i}, \cdots, n_{j}, \cdots, n_{k}}\right) \\
> & \alpha\left[n_{j}\left(n_{i}+t\right)^{\alpha-1}-n_{i}\left(n_{j}+t\right)^{\alpha-1}\right]>0,
\end{aligned}
$$

which contradicts the choice of G, again.
Subcase 1.2. $0<\alpha<1$.

Note that

$$
\begin{aligned}
& { }^{0} R_{\alpha}\left(K_{n_{1}, \cdots, n_{i}+1, \cdots, n_{j}-1, \cdots, n_{k}}\right)-{ }^{0} R_{\alpha}\left(K_{n_{1}, \cdots, n_{i}, \cdots, n_{j}, \cdots, n_{k}}\right) \\
= & \left(n_{i}+1\right)\left(n-n_{i}-1\right)^{\alpha}+\left(n_{j}-1\right)\left(n-n_{j}+1\right)^{\alpha}-n_{i}\left(n-n_{i}\right)^{\alpha}-n_{j}\left(n-n_{j}\right)^{\alpha} \\
= & f\left(n_{i}+1\right)-f\left(n_{i}\right)-\left[f\left(n_{j}\right)-f\left(n_{j}-1\right)\right] \\
= & f^{\prime}\left(\xi_{2}\right)-f^{\prime}\left(n_{2}\right),
\end{aligned}
$$

where $n_{i}<\xi_{2}<n_{i}+1, n_{j}-1<\eta_{2}<n_{j}$. By Lemma 2.9, we have $f^{\prime}\left(\xi_{2}\right)-$ $f^{\prime}\left(\eta_{2}\right)>0$, i.e., ${ }^{0} R_{\alpha}\left(K_{n_{1}, \cdots, n_{i}+1, \cdots, n_{j}-1, \cdots, n_{k}}\right)>{ }^{0} R_{\alpha}\left(K_{n_{1}, \cdots, n_{i}, \cdots, n_{j}, \cdots, n_{k}}\right)$, which is a contradiction to the choice of G.

Case 2. $\alpha<0$.
Note that

$$
\begin{aligned}
& { }^{0} R_{\alpha}\left(K_{n_{1}, \cdots, n_{i}+1, \cdots, n_{j}-1, \cdots, n_{k}}\right)-{ }^{0} R_{\alpha}\left(K_{n_{1}, \cdots, n_{i}, \cdots, n_{j}, \cdots, n_{k}}\right) \\
= & f\left(n_{i}+1\right)-f\left(n_{i}\right)-\left[f\left(n_{j}\right)-f\left(n_{j}-1\right)\right] \\
= & f^{\prime}\left(\xi_{3}\right)-f^{\prime}\left(\eta_{3}\right),
\end{aligned}
$$

where $n_{i}<\xi_{3}<n_{i}+1, n_{j}-1<\eta_{3}<n_{j}$. By Lemma 2.9, we have $f^{\prime}\left(\xi_{3}\right)-$ $f^{\prime}\left(\eta_{3}\right)<0$, i.e., ${ }^{0} R_{\alpha}\left(K_{n_{1}, \cdots, n_{i}+1, \cdots, n_{j}-1, \cdots, n_{k}}\right)<{ }^{0} R_{\alpha}\left(K_{n_{1}, \cdots, n_{i}, \cdots, n_{j}, \cdots, n_{k}}\right)$, which is a contradiction to the choice of G.

Recall that $n=k\left\lfloor\frac{n}{k}\right\rfloor+q=(k-q)\left\lfloor\frac{n}{k}\right\rfloor+q\left(\left\lfloor\frac{n}{k}\right\rfloor+1\right)$. By the definition of the zeroth-order general Randić index, we obtain the value of ${ }^{0} R_{\alpha}\left(\boldsymbol{T}_{n}(k)\right)$ immediately.

Conversely, it is easy to see that the equality holds in (i) or $(i i)$ when $G \cong \boldsymbol{T}_{n}(k)$. The proof is completed.

Theorem 3.5. Let $G \in \chi_{n, k}$. Then ${ }^{0} R_{\alpha}(G) \leq{ }^{0} R_{\alpha}\left(K_{n+1-k, 1,1, \cdots, 1}\right)=$ $(k-1)(n-1)^{\alpha}+(n-k+1)(k-1)^{\alpha}$ for $\alpha>2 n-1$, with the equality holding if and only if $G \cong K_{n+1-k, 1,1, \cdots, 1}$, where $K_{n+1-k, 1,1, \cdots, 1}$ is the complete k-partite graph with n vertices whose partition sets size are $n+1-k, 1,1, \cdots, 1$, respectively.

Proof. Similar to the proof of theorem 3.4, the graph $G \in \chi_{n, k}$ which reaches the maximum zeroth-order general Randić indices for $\alpha>2 n-1$ will be a complete k-partite graph $K_{n_{1}, n_{2}, \cdots, n_{k}}$. Suppose that the graph $G \in \chi_{n, k}$ has the maximum zeroth-order general Randić indices for $\alpha>2 n-1$.

Now we claim that $G \in K_{n+1-k, 1,1, \cdots, 1}$. Otherwise, there exist two classes of size n_{i} and n_{j}, respectively, satisfy $n_{j} \geq n_{i} \geq 2$, without loss of generality, we assume that $1 \leq i<j \leq k$.

Note that

$$
\begin{aligned}
& { }^{0} R_{\alpha}\left(K_{n_{1}, \cdots, n_{i}-1, \cdots, n_{j}+1, \cdots, n_{k}}\right)-{ }^{0} R_{\alpha}\left(K_{n_{1}, \cdots, n_{i}, \cdots, n_{j}, \cdots, n_{k}}\right) \\
= & f\left(n_{j}+1\right)-f\left(n_{j}\right)-\left[f\left(n_{i}\right)-f\left(n_{i}-1\right)\right] \\
= & f^{\prime}(\xi)-f^{\prime}(\eta),
\end{aligned}
$$

where $n_{j}<\xi<n_{j}+1, n_{i}-1<\eta<n_{i}$. By Lemma 2.9, we have $f^{\prime}(\xi)-$ $f^{\prime}(\eta)>0$, i.e., ${ }^{0} R_{\alpha}\left(K_{n_{1}, \cdots, n_{i}-1, \cdots, n_{j}+1, \cdots, n_{k}}\right)>{ }^{0} R_{\alpha}\left(K_{n_{1}, \cdots, n_{i}, \cdots, n_{j}, \cdots, n_{k}}\right)$, which contradicts the choice of G.

From the definition of zeroth-order general Randić index, we have

$$
{ }^{0} R_{\alpha}\left(K_{n+1-k, 1,1, \cdots, 1}\right)=(k-1)(n-1)^{\alpha}+(n-k+1)(k-1)^{\alpha} .
$$

Conversely, it is easy to see that the equality holds when $G \cong K_{n+1-k}$, $1,1, \cdots, 1$. This completes the proof.

Lemma 3.6. ([7]) Let $G=(V, E)$ be a graph with $\omega(G) \leq k$. Then there is a k-partite graph $G^{\prime}=\left(V, E^{\prime}\right)$ such that for every vertex $v \in V$, $d_{G}(v) \leq d_{G^{\prime}}(v)$.

Theorem 3.7. Let $G \in \mathcal{W}_{n, k}$. Then
$(i){ }^{0} R_{\alpha}(G) \leq(k-q)\left(n-\left\lfloor\frac{n}{k}\right\rfloor\right)^{\alpha}+q\left(\left\lfloor\frac{n}{k}\right\rfloor+1\right)\left(n-\left\lfloor\frac{n}{k}\right\rfloor-1\right)^{\alpha}$ for $0<\alpha<1$ or $1<\alpha \leq 2$, with the equality holding if and only if $G \cong \boldsymbol{T}_{n}(k)$;
(ii) ${ }^{0} R_{\alpha}(G) \geq(k-q)\left(n-\left\lfloor\frac{n}{k}\right\rfloor\right)^{\alpha}+q\left(\left\lfloor\frac{n}{k}\right\rfloor+1\right)\left(n-\left\lfloor\frac{n}{k}\right\rfloor-1\right)^{\alpha}$ for $\alpha<0$, with the equality holding if and only if $G \cong \boldsymbol{T}_{n}(k)$.
(iii) ${ }^{0} R_{\alpha}(G) \leq(k-1)(n-1)^{\alpha}+(n-k+1)(k-1)^{\alpha}$ for $\alpha>2 n-$ 1 , with the equality holding if and only if $G \cong K_{n+1-k, 1,1, \cdots, 1}$, where $K_{n+1-k, 1,1, \cdots, 1}$ is the complete k-partite graph of order n whose partition sets size are $n+1-k, 1,1, \cdots, 1$, respectively.

Proof. If $k=n$, then $G \cong K_{n}$. Thus, we assume that $k<n$. Pick a graph $G \in \mathcal{W}_{n, k}$ such that G has the maximum zeroth-order general Randić indices for $0<\alpha<1,1<\alpha \leq 2$ or $\alpha>2 n-1$, and has the minimum zeroth-order general Randić indices for $\alpha<0$, respectively. Now we claim that $G \in \chi_{n, k}$. To the contrary, since $\omega(G)=k$, by Lemma 3.6, we can get a k-partite graph G^{*} with $V\left(G^{*}\right)=V(G)$ such that for every vertex $v \in V(G)=V\left(G^{*}\right), d_{G}(v) \leq d_{G^{*}}(v)$. Obviously, $G^{*} \in \mathcal{W}_{n, k}$. By the definition of zeroth-order general Randić index, we have ${ }^{0} R_{\alpha}\left(G^{*}\right) \geq{ }^{0} R_{\alpha}(G)$ for $0<\alpha<1,1<\alpha \leq 2$ or $\alpha>2 n-1$, and ${ }^{0} R_{\alpha}\left(G^{*}\right) \leq{ }^{0} R_{\alpha}(G)$ for $\alpha<0$, respectively.

By Theorem 3.4 and 3.5, considering the uniqueness of the extremal graph in the set $\boldsymbol{\chi}_{n, k}$, the theorem holds immediately.

If $\alpha=2$, then ${ }^{0} R_{2}(G)$ is the first Zagreb index $M_{1}(G)$ and by using $\alpha=2$ in Theorem 3.5 and 3.6, we obtain the following corollary which is the result given in [29].

Corollary 3.8. ([29])Let $G \in \mathcal{W}_{n, k}$. Then
(i) $M_{1}(G) \leq(k-q)\left(n-\left\lfloor\frac{n}{k}\right\rfloor\right)^{2}+q\left\lceil\frac{n}{k}\right\rceil\left(n-\left\lceil\frac{n}{k}\right\rceil\right)^{2}$ with the equality holding if and only if $G \cong \boldsymbol{T}_{n}(k)$;
(ii) $M_{1}(G) \geq k^{3}-2 k^{2}-k+4 n-4$ with the equality holding if and only if $G \cong \mathcal{K}_{n, n-k}$.

Remark 3.9. Another question is to consider the maximum zerothorder general Randić index for $\alpha \in(2,2 n-1]$ on the graphs $G \in \mathcal{W}_{n, k}$. By inspecting some special graphs $G \in \mathcal{W}_{n, k}$, we found that for $\alpha \in$ $(2, a), \mathbf{T}_{n}(k)$ has maximum zeroth-order general Randić index, and for $\alpha \in(b, 2 n-1], K_{n+1-k, 1,1, \cdots, 1}$ has maximum zeroth-order general Randić index, where $a \leq b$. So further research is needed in future.

4. Conclusion

In this article, for $G \in \mathcal{W}_{n, k}$, we got that $\boldsymbol{K}_{n, n-k}\left(\right.$ resp. $\left.\mathbf{T}_{n}(k)\right)$ has the maximum (resp. minimum) ${ }^{0} R_{\alpha}(G)$ for $\alpha<0$, and $\mathbf{T}_{n}(k)$ (resp. $\boldsymbol{K}_{n, n-k}$) has the maximum (resp. minimum) ${ }^{0} R_{\alpha}(G)$ for $0<\alpha<1$. Furthermore, for $G \in \mathcal{W}_{n, k}$, we proved that $\mathcal{K}_{n, n-k}$ has the minimum ${ }^{0} R_{\alpha}(G)$ for $\alpha>1$, and $\mathbf{T}_{n}(k)$ (resp. $\left.K_{n+1-k, 1,1, \cdots, 1}\right)$ has the maximum ${ }^{0} R_{\alpha}(G)$ for $1<\alpha \leq 2$ (resp. for $\alpha>2 n-1$).

The maximum ${ }^{0} R_{\alpha}(G)$ for $\alpha \in(2,2 n-1]$ on the graphs $G \in \mathcal{W}_{n, k}$ has not been obtained. By inspecting some special graphs $G \in \mathcal{W}_{n, k}$, it seems that for $\alpha \in(2, a), \mathbf{T}_{n}(k)$ has maximum ${ }^{0} R_{\alpha}(G)$, and for $\alpha \in$ $(b, 2 n-1], K_{n+1-k, 1,1, \cdots, 1}$ has maximum ${ }^{0} R_{\alpha}(G)$, where $a \leq b$. So further study is needed in future.

References

[1] H. Ahmeda, A. A. Bhattia and A. Ali, Zeroth-order general Randić index of cactus graphs, AKCE Int. J. Graphs Comb. (2018), https://doi.org/10.1016/j.akcej. 2018.01.006.
[2] A. Ali, A. A. Bhatti and Z. Raza, A note on the zeroth-order general Randić index of cacti and polyomino chains, Iranian J. Math. Chem. 5 (2014), 143-152.
[3] B. Bollobás and P. Erdős, Graphs of extremal weights, Ars Combin. 50 (1998), 225-233.
[4] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, Elsevier, New York, 1976
[5] S. Chen and H. Deng, Extremal ($n, n+1$)-graphs with respected to zeroth-order general Randić index, J. Math. Chem. 42 (2007), 555-564.
[6] H. Deng, A unified approach to the extremal Zagreb indices for trees, unicyclic graphs and bicyclic graphs, MATCH Commun. Math. Comput. Chem. 57 (2007), 597-616.
[7] P. Erdős, On the graph theorem of Turán, Mat. Lapok 21 (1970), 249-251.
[8] I. Gutman and N. Trinajstić, Graph theory and molecular orbitals. III. Total π-electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17 (1972), 535538.
[9] Y. Hu, X. Li, Y. Shi and T. Xu, Connected (n, m)-graphs with minimum and maximum zeroth-order general Randić index, Discrete Appl. Math. 155 (2007), 1044-1054.
[10] Y. Hu, X. Li, Y. Shi, T. Xu and I. Gutman, On molecular graphs with smallest and greatest zeroth-order general Randić index, MATCH Commun. Math. Comput. Chem. 54 (2005), 425-434.
[11] H. Hua and H. Deng, On unicycle graphs with maximum and minimum zerothorder genenal Randić index, J. Math. Chem. 41 (2007), 173-181.
[12] L. B. Kier and L. H. Hall, Molecular Connectivity in Chemistry and Drug Research, Academic Press, New York, 1976.
[13] L. B. Kier and L. H. Hall, Molecular Connectivity in Structure-Activity Analysis, Research Studies Press, Wiley, Chichester, UK, 1986.
[14] L. B. Kier and L. H. Hall, The nature of structure-activity relationships and their relation to molecular connectivity, Europ. J. Med. Chem. 12 (1977), 307-312.
[15] F. Li and M. Lu, On the zeroth-order general Randić index of unicycle graphs with k pendant vertices, Ars Combin. 109 (2013), 229-237.
[16] S. Li and M. Zhang, Sharp bounds on the zeroth-order general Randić indices of conjugated bicyclic graphs, Math. Comput. Model. 53 (2011), 1990-2004.
[17] X. Li and Y. Shi, A survey on the Randić index, MATCH Commun. Math. Comput. Chem. 59 (2008), 127-156.
[18] X. Li and Y. Shi, (n, m)-graphs with maximum zeroth-order general Randić index for $\alpha \in(-1,0)$, MATCH Commun. Math. Comput. Chem. 62 (2009), 163-170.
[19] X. Li and H. Zhao, Trees with the first three smallest and largest generalized topological indices, MATCH Commun. Math. Comput. Chem. 50 (2004), 57-62.
[20] X. Li and J. Zheng, A unified approach to the extremal trees for different indices, MATCH Commun. Math. Comput. Chem. 54 (2005), 195-208.
[21] X. Pan and S. Liu, Conjugated tricyclic graphs with the maximum zeroth-order general Randić index, J. Appl. Math. Comput. 39 (2012), 511-521.
[22] L. Pavlović, Maximal value of the zeroth-order Randić index, Discr. Appl. Math. 127 (2003), 615-626.
[23] M. Randić, On characterization of molecular branching, J. Am. Chem. Soc. 97 (1975), 6609-6615.
[24] G. Su, J. Tu and K. C. Das, Graphs with fixed number of pendent vertices and minimal zeroth-order general Randić index, Appl. Math. Comput. 270 (2015), 705-710.
[25] G. Su, L. Xiong and X. Su, Maximally edge-connected graphs and zeroth-order general Randić index for $0<\alpha<1$, Discrete Appl. Math. 167 (2014), 261-268.
[26] G. Su, L. Xiong, X. Su and G. Li, Maximally edge-connected graphs and zerothorder general Randić index for $\alpha \leq-1$, J. Comb. Optim. 31 (2016), 182-195.
[27] R. Todeschini and V. Consonni, Handbook of Molecular Descriptors, WileyVCH, Weinheim, 2000.
[28] R. Wu, H. Chen and H. Deng, On the monotonicity of topological indices and the connectivity of a graph, Appl. Math. Comput. 298 (2017), 188-200.
[29] K. Xu, The Zagreb indices of graphs with a given clique number, Appl. Math. Lett. 24 (2011), 1026-1030.
[30] S. Zhang and H. Zhang, Unicyclic graphs with the first three smallest and largest first general Zagreb index, MATCH Commun. Math. Comput. Chem. 55 (2006), 427-438
[31] S. Zhang, W. Wang and T. C. E. Cheng, Bicyclic graphs with the first three smallest and largest values of the first general Zagreb Index, MATCH Commun. Math. Comput. Chem. 56 (2006), 579-592.

Jianwei Du

School of Science, North University of China Taiyuan 030051, China
E-mail: jianweidu@nuc.edu.cn

Yanling Shao

School of Science, North University of China Taiyuan 030051, China
E-mail: ylshao@nuc.edu.cn

Xiaoling Sun

School of Science, North University of China Taiyuan 030051, China
E-mail: sunxiaoling@nuc.edu.cn

[^0]: Received January 29, 2019. Revised August 03, 2020. Accepted August 05, 2020. 2010 Mathematics Subject Classification: 05C07, 92E10.
 Key words and phrases: zeroth-order general Randić index, chromatic number, clique number.
 \dagger This work was supported by the Shanxi Province Science Foundation for Youths [grant number 201901D211227].

 * Corresponding author.
 © The Kangwon-Kyungki Mathematical Society, 2020.
 This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by -nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

