DOI QR코드

DOI QR Code

The Convergence Effect of Task-Oriented Training and Vibration Stimulation, Transcranial Direct Current Stimulation to Improve Upper Limb Function in Stroke

뇌졸중 환자의 상지기능 개선을 위한 과제 지향적 훈련과 진동 자극, 경두개 직류 전류 자극의 융합 효과

  • Kim, Sun-Ho (Dept. of Occupational Therapy, Won-Ju Young Kwang Hospital)
  • 김선호 (원주 영광 병원 작업치료실)
  • Received : 2020.06.26
  • Accepted : 2020.09.20
  • Published : 2020.09.28

Abstract

The purpose of this study was to investigate the Effect of transcranial direct current stimulation convergence task-oriented training combined with vibration stimulation on hand dexterity and upper limb function in stroke patients. One time 30 minutes 5 times a week for 4 weeks. experimental group of transcranial direct current stimulation convergence task-oriented training combined with vibration stimulation and control group of the task-oriented training combined with vibration stimulation were divided into 10 members. Hand dexterity and upper limb recovery were measured. The experimental group and the control group showed significant improvement in hand dexterity and grasping(p<.05), grasping, and gross movement(p<.05). The experimental group showed a significant improvement in hand dexterity and grasp and grip than the control group. Effect size showed more than small effect in all evaluation items. Based on the results of this study, it is considered that more effective and efficient rehabilitation treatment can be performed in the clinic.

본 연구는 뇌졸중 환자에게 과제 지향적 훈련과 진동 자극을 결합한 중재에 경두개 직류 전류 자극을 융합했을 때 상지 기능의 회복에 미치는 영향을 알아보고자 하였다. 총 20명을 대상으로 총 4주간, 주 5회, 30분씩 실시했으며, 경 두개 직류 전류 자극을 융합한 과제 지향적 훈련과 진동자극의 결합 중재의 실험군과 과제 지향적 훈련과 진동자극의 결합 중재의 대조군으로 나누었다. 측정은 손의 기민성과 상지기능의 회복을 측정하였다. 실험군과 대조군은 손의 기민성과 잡기, 쥐기, 큰 동작 움직임에서 유의한 개선을 보였으며(p<.05), 실험군은 손의 기민성과 잡기, 쥐기 동작에서 대조군 보다 유의한 개선을 보였다(p<.05). 중재 전후 효과 크기는 모든 평가 항목에서 작은 효과이상을 보였다. 본 연구 결과를 근거로 하여 임상 환경에서 보다 효과적이고 효율적인 재활 치료를 할 수 있을 것으로 사료된다.

Keywords

References

  1. M. Monaco, M. Trucco, R. Monaco, R. Tappero & A. Cavanna. (2010). The relationship between initial trunk control or postural balance and inpatient rehabilitation outcome after stroke: a prospective comparative study. Clinical Rehabilitation, 24(6), 543-554. DOI:10.1177/0269215509353265
  2. A. Pollock, B. Durward, P. Rowe & J. Paul. (2002). The effect of independent practice of motor tasks by stroke patients: A pilot randomized controlled trial. Clinical Rehabilitation, 16(5), 473-480. DOI:10.1191/0269215502cr520oa
  3. S. H. Jang, Y. H. Kim. S. H. Cho J. H. Lee, J. W. Park & Y. H. Kwon. (2003). Cortical reorganization induced by task-oriented training in chronic hemiplegic stroke patients. Neuroreport, 14(1), 137-141. DOI: 10.1097/00001756-200301200-00025
  4. A. Kusoffsky, I. Apel & H. Hirschfeld. (2001). Reaching-lifting-placing task during standing after stroke: Coordination among ground forces, ankle muscle activity, and hand movement. Archives of Physical Medicine and Rehabilitation, 82(5), 650-660. DOI:10.1053/apmr.2001.22611
  5. M. Roelants, S. M. P. Verschueren C. Delecluse, O. Levin & V. Stijnen. (2006). Whole body vibration induced increase in leg muscle activity during different squat exercises. Journal of Strength and Conditioning Research, 20(1), 124-129. DOI:10.1519/R-16674.1
  6. S. H. Kim. (2019). Effects of simultaneous application of focal vibration stimulation and task-oriented training in the improvement of upper extremity motor function after stroke. Journal of Korean Society of Integrative Medicine, 7(3), 117-125. DOI:10.15268/ksim.2017.7.3.117
  7. A. S. Merians, E. Tunik & S. V, Adamovich. (2009). Virtual reality to maximize function for hand and arm rehabilitation: exploration of neural mechanisms. Studies in Health Technology and Informatics, 145, 109-125.
  8. W. R. Koo, B. H. Jang & C. R. Kim, (2018). Effects of anodal transcranial direct current stimulation on somatosensory recovery after stroke: a randomized controlled trial. American Journal of Physical Medicine & Rehabilitation, 197(7), 507-513. DOI:10.1097/PHM.0000000000000910
  9. N. Bolognini et al. (2011). Neurophysiological and behavioral effects of tDCS combined With constraint-induced movement therapy in poststroke patients. Neurorehabilitation and Neural Repair, 25(9), 819-829. DOI: 10.1177/1545968311411056.
  10. P. Celnik, N. J. Paik, Y. Vandermeeren, M. Dimyan & L. G. Cohen (2009). Effects of combined peripheral nerve stimulation and brain polarization on performance of a motor sequence task after chronic stroke. Stroke, 40(5), 1764-1771. DOI:10.1161/STROKEAHA.108.540500
  11. S. H. Kim, J. H. Park, M. Y. Jung & E. Y. Yoo. (2016). Effects of task-oriented training as an added treatment to electromyogram-triggered neuromuscular stimulation on upper extremity function in chronic stroke patients. Occupational Therapy International, 23(2), 165-174. DOI: 10.1002/oti.1421
  12. C. Costantino, L. Galuppo & D. Romiti. (2017). Short-term effect of local muscle vibration treatment versus sham therapy on upper limb in chronic post-stroke patients: a randomized controlled trial. European Journal of Physical and Rehabilitation Medicine, 53(1), 32-40. DOI:10.23736/S1973-9087.16.04211-8
  13. V. Mathiowetz, G. Volland, N. Kashman & K. Weber. (1985). Adult norms for the box and block test of manual dexterity. American Journal of Occupational Therapy, 39(6), 386-391. DOI:10.5014/ajot.39.6.386
  14. C. E. Lang, J. M. Wagner, A. W. Dromerick & D. F. Edwards. (2006). Measurement of upper-extremity function early after stroke: Properties of the action research arm test. Archives of Physical Medicine and Rehabilitation, 87(12), 1605-1610. DOI:10.1016/j.apmr.2006.09.003
  15. D. J. Gladstone, C. J. Danells & S. E. Black. (2002). The Fugl-Meyer assessment of motor recovery after stroke: a critical review of its measurement properties. Neurorehabilitation and Neural Repair, 16(3), 232-240. DOI:10.1177/154596802401105171.
  16. J. Cohen. (2005). Statistical power analysis for the behavioral science. 2nd ed, New York : Routledge Academic.
  17. R. B. Shepherd, (2001). Exercise and training to optimize functional motor performance in stroke: Driving neural reorganization? Neural Plasticity, 8(1), 121-129. DOI:10.1155/NP.2001.121
  18. S. H. Bae & K. Y. Kim. (2011). Effects of vibration stimulation method on upper limbs spasticity in patients with brain lesion. Journal of the Korea Academia-Industrial Cooperation Society, 12(7), 3109-3116. DOI:10.5762/KAIS.2011.12.7.3109
  19. C. Pietro et al. (2012). Focal muscle vibration in the treatment of upper limb spasticity: A pilot randomized controlled trial in patients with chronic stroke. Archives of Physical Medicine and Rehabilitation, 93(9), 1656-1661. DOI:10.1016/j.apmr.2012.04.002
  20. R. Casale, C. Damiani, R. Maestri, C. Fundaro, P. Chimento & C. Foti. (2014). Localized 100 Hz vibration improves function and reduces upper limb spasticity: a double-blind controlled study. European Journal of Physical and Rehabilitation Medicine, 50(5), 495-504.
  21. S. Mazzoleni, V. D. Tran, P. Dario & F. Posteraro, (2019). Effects of transcranial direct current stimulation (tDCS) combined with wrist robot-assisted rehabilitation on motor recovery in subacute stroke patients: a randomized controlled trial. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 27(7), 1458-1466. DOI:10.1109/TNSRE.2019.2920576
  22. G. Schlaug, V. Renga & D. Nair. (2008). Transcranial direct current stimulation in stroke recovery. Archives of neurology, 65(12), 1571-1576. DOI:10.1001/archneur.65.12.1571
  23. T. Takebayashi, K. Takahashi, M. Moriwaki, T. Sakamoto & K. Domen. (2017). Improvement of upper extremity deficit after constraint-induced movement therapy combined with and without preconditioning stimulation using dual-hemisphere transcranial direct current stimulation and peripheral neuromuscular stimulation in chronic stroke patients: a pilot randomized controlled trial. Frontiers in Neurology, 8(568), 1-8. DOI:10.3389/fneur.2017.00568.
  24. P. Celnik, N. J. Paik, Y. Vandermeeren, M. Dimyan, L. & G. Cohen. (2009). Effects of combined peripheral nerve stimulation and brain polarization on performance of a motor sequence task after chronic stroke. Stroke, 40(5), 1764-1771. DOI:10.1161/STROKEAHA.108.540500