DOI QR코드

DOI QR Code

A Study on the Difference of Rainfall Intensity According to the Omission of Short-Term (20, 30, 40, 50 Minutes) Rainfall Data in Inducing I-D-F Curves

I-D-F곡선 유도 시 짧은 지속기간(20분, 30분, 40분, 50분) 강우자료 누락에 따른 강우강도 차이 고찰

  • 이희창 (한국건설관리공사 기술연구소) ;
  • 성기원 (건국대학교 공과대학 사회환경공학부)
  • Received : 2020.04.13
  • Accepted : 2020.06.30
  • Published : 2020.10.01

Abstract

I-D-F curves were induced by Box-Cox transformation using rainfall data from five major cities in Korea: Seoul, Busan, Daegu, Daejeon, and Gwangju, as well as from Sancheong (South Gyeongsang province) and Yeongcheon (North Gyeongsang province) stations. The practicality of the Box-Cox transformation is more scalable than the traditional method of frequency analysis in terms of applicability because it is available even if the analysis data are insufficient to perform general frequency analysis and do not produce an appropriate probability density function. For the case in which rainfall data for the entire period (10-1440 minutes) and short-term period (20, 30, 40, 50 minutes) at the foregoing 7 stations are omitted, there was a relative error of -23.0 % to 14.7 % at a duration of 10 to 60 minutes below the 100-year frequency. Accordingly, rainfall analysis requires inducing I-D-F curves, including for the short term (20, 30, 40, 50 minutes), and if rainfall data are omitted for the short term (20, 30, 40, 50 minutes), it is necessary to increase the existing margin rate depending on the point in order to ensure the safe design of small-scale hydraulic structures.

서울, 부산, 대구, 대전, 광주 5개 대도시와 그 외 산청과 영천지점의 강우자료를 이용하여 Box-Cox변환기법에 의한 I-D-F곡선을 유도하였다. Box-Cox변환기법의 실용성은 여러 학문분야에서 검증받은 기법으로 분석 자료가 일반 빈도해석을 수행하기에 부족하여 적절한 확률밀도함수를 도출하지 못할 경우에도 사용가능하기 때문에 적용성 측면에서 전통적인 빈도해석 방법보다 확장성이 크다. 전술한 7개 지점의 전체지속기간 강우자료(10분~1440분)와 짧은 지속기간(20분, 30분, 40분, 50분) 강우자료가 누락될 경우의 강우강도를 비교했을 때 100년 빈도 이하 지속기간 10분~60분에서 -23.0~14.7 %의 상대오차가 있었다. 이에 따라 강우분석 시 짧은 지속기간(20분, 30분, 40분, 50분) 강우자료를 포함하여 I-D-F곡선을 유도함이 요구되며 짧은 지속기간(20분, 30분, 40분, 50분) 강우자료가 누락될 경우 소규모 수공구조물 설계 시 원활한 배수를 위해 지점에 따라 기존의 여유율을 높일 필요가 있다.

Keywords

References

  1. Box, G. E. P. and Cox, D. R. (1964). "An analysis of transformations." Journal of the Royal Statistical Society, Series B. Vol. 26, No. 2, pp. 211-252.
  2. Han, J. H., Kim, G. D., Heo, J. H. and Cho, W. C. (1996). "Intensityduration- frequency based on linearizing method." Journal of the Korean Water Resources Association Academic Presentation, pp. 232-237 (in Korean).
  3. Lee, H. C. (2005). Determination of rainfall intensity-durationfrequency curve by the box-cox transformation and assessment of its confidence, Ph.D. Thesis, Konkuk University (in Korean).
  4. Lee, H. C. and Seong, K. W. (2003). "The smoothing of rainfall intensity-duration-frequency by relationships curve by the box-cox transformation." Journal of Korea Water Resources Association, KWRA, Vol. 36, No. 2, pp. 153-159 (in Korean). https://doi.org/10.3741/JKWRA.2003.36.2.153
  5. Lee, J. J., Lee, J. S. and Park, J. Y. (2001). "Derivation of probable rain intensity formula of individual zone od estimate the design rainfall." Journal of the Korean Society of Civil Engineers, KSCE, Vol. 21, No. 1-B, pp. 1-10 (in Korean).
  6. Lee, J. J., Son, K. I., Lee, W. H. and Lee, K. C. (1981). "A study on the analysis of time-regional distribution of precipitation frequency and rainfall intensity in Korea." Journal of Korean Association of Hydrological Sciences, KWRA, Vol. 14, No. 4, pp. 53-72 (in Korean).
  7. Lee, W. H. (1967). "A study on rainfall characteristics and determination of probability rainfall amount at various district in Korea." Journal of the Korean Society of Civil Engineers, KSCE, Vol. 15, No. 3, pp. 28-38 (in Korean).
  8. Lee, W. H. (1980). "A stochastic analysis on determination of design precipitation for planning of urbanized stream & sewerage." Journal of the Korean Society of Civil Engineers, KSCE, Vol. 28, No. 4, pp. 81-94 (in Korean).
  9. Lee, W. H. and Byeon, K. J. (1969). "Study of the rainfall intensity probability formula required for designing city sewerage and river plans." Journal of the Korean Society of Civil Engineers, KSCE, Vol. 16, No. 4. pp. 1-11 (in Korean).
  10. Lee, W. H. and Park, S. D. (1992). "A unification of the probable rainfall intensity formula at Seoul." Journal of the Korean Society of Civil Engineers, KSCE, Vol. 12, No. 4, pp. 135-143 (in Korean).
  11. Lee, W. H., Park, S. D. and Choi, S. Y. (1993). "A study on the typical probable rainfall intensity formula in Korea" An Overview of the Academic Presentation Conference of the Korean Society of Civil Engineers(II), pp. 135-138 (in Korean).
  12. Loganathan, G. V. and Parkin, M. A. (1992). "A frequency surface for rainfall intensity and duration." Water Resources Planning And Management, pp. 387-389.
  13. Ministry of Construction and Transportation (MOCT) (2000). Create Korea probability rainfall intensity, 1999 Water Resources Management Act Development Research Report (in Korean).
  14. Ministry of Land, Infrastructure and Transport (MOLIT) (2016). Working-level guidelines for river construction design, pp. 4-28 (in Korean).
  15. Ministry of Land, Transport and Maritime Affairs (MOLTMA) (2011). A study on the improvement and complementation of probability rainfall, 2000 Water Resources Management Act Development Research Report (in Korean).
  16. Ministry of Security and Public Administration (MOSPA) (2018). Working-level guidelines for consultation on disaster impact assessment, etc (in Korean).
  17. Seong, K. W. (2014). "Deriving a practical form of IDF formula using transformed rainfall intensities." Hydrological Process, Vol. 28, No. 6, pp. 2881-2891. https://doi.org/10.1002/hyp.9806
  18. Sin, C. D. (1993). A study on the determination of optimal distribution of rainfall in Korea, Masters Thesis, Keum Oh University (in Korean).
  19. Yoo, D. H. (1995). "Generalization of probability rainfall intensity formula." Journal of the Korean Water Resources Association Academic Presentation, pp. 325-330 (in Korean).